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Abstract 

 

Today’s predominantly-employed signature-based intrusion detection systems are 

reactive in nature and storage-limited. Their operation depends upon catching an instance 

of an intrusion or virus after a potentially successful attack, performing post-mortem 

analysis on that instance and encoding it into a signature that is stored in its anomaly 

database. The time required to perform these tasks provides a window of vulnerability to 

DoD computer systems. Further, because of the current maximum size of an Internet 

Protocol-based message, the database would have to be able to maintain 25665535 possible 

signature combinations. In order to tighten this response cycle within storage constraints, 

this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary 

Algorithm intended to measure the vector of tradeoff solutions among detectors with 

regard to two independent objectives: best classification fitness and optimal hypervolume 

size. Modeled in the spirit of the human biological immune system and intended to 

augment DoD network defense systems, our algorithm generates network traffic detectors 

that are dispersed throughout the network. These detectors promiscuously monitor 

network traffic for exact and variant abnormal system events based on only the detector’s 

own data structure and the application domain truth set, responding heuristically. 

The application domain employed for testing was the MIT-DARPA 1999 

intrusion detection data set, composed of 7.2 million packets of notional Air Force Base 

network traffic. Results show our proof-of-concept algorithm correctly classifies at best 

86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity 

threshold typically between 39-44%. Further, four of the 16 intrusion sequences were 

classified with a 0% false positive rate. 
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AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED MULTIOBJECTIVE 

EVOLUTIONARY ALGORITHM WITH APPLICATION TO THE DETECTION 
OF DISTRIBUTED COMPUTER NETWORK INTRUSIONS 

 
 

“The Internet has spawned an entirely new set of criminal activity 
that targets computer networks themselves. Included in this 
category are such crimes as hacking, releasing viruses, and 
shutting down computers by flooding them with unwanted 
information (so-called "denial of service" attacks). Our 
vulnerability to – and the damages caused by – this type of crime 
are astonishingly high.” 
 
Michael Chertoff, Assistant Attorney General, Criminal Division, 
U.S. Department of Justice – brief to the Subcommittee on Crime, 
Committee on the Judiciary, U.S. House of Representatives, June 
12, 2001 [Chertoff01] 

 
 

I.  Introduction 

 

An intrusion detection system (IDS) is a software or hardware device that 

monitors the events occurring in a computer system or network, analyzing them for 

patterns of abnormality indicative of a security breach [NIST01]. Signature-based IDSs 

are naturally reactive and storage-limited. Their operation depends upon experts catching 

an instance of an intrusion or virus after the potentially successful attack has done its 

damage, performing post-mortem analysis on that instance, encoding it into an anomaly 

signature and then storing that signature in its anomaly database. The time required to 

perform these tasks provides a window of vulnerability to Department of Defense (DoD) 

automated information systems. Further, because of the current maximum size of an 

Internet Protocol-based message, the database would have to be able to maintain 25665535 

possible signature combinations. To best mitigate this vulnerability and limitation, this 
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thesis presents a proof-of-concept Artificial Immune System (AIS)-inspired Multiobjective 

Evolutionary Algorithm (MOEA) intended to measure the vector of tradeoff solution 

points among detectors with regard to two independent objectives: best classification 

fitness and optimal hypervolume size. 

Modeled in the spirit of the human biological immune system and intended to 

augment DoD network defense systems, our algorithm generates network traffic detectors 

that are dispersed throughout the bounded network enclave. These detectors 

promiscuously monitor network traffic for exact and variant abnormal system events, 

based only the detector’s own data structure and a truth set, and respond heuristically. 

This research investigates the feasibility of employing such an algorithm in a distributed 

computing environment to determine if this approach to intrusion detection and 

classification is more accurate than the single-objective approach. 

1.1 Problem Motivation 

Signature-based IDSs detect attacks by discovering exact matches between 

incoming data and a database of known attack string signatures. This reactive nature 

allows unknown attacks to be successful before the attack signature is defined and stored 

in the IDS database. In addition, an IDS level of coverage is limited to the resources of 

the underlying hardware; 25665535 possible harmful signatures cannot be stored. Further 

compounding these constraints, the more storage allotted for signatures, the greater the 

time required by the algorithm to detect and classify incoming network traffic. These 

high-level constraints barely skim the surface issues of the intrusion detection (ID) 

problem domain. Bace and Mell define ID as, “the process of monitoring the events 
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occurring in a computer system or network and analyzing them for signs of intrusions, 

defined as attempts to compromise the confidentiality, integrity, availability, or to bypass 

the security mechanisms of a computer or network” [NIST01]. Reactively performing ID 

in this manner guarantees two outcomes: high probability of success by every unknown 

attack and an attack signature database growing beyond the ability of containment. 

Therefore, we look toward a proactive algorithm with the potential to effectively 

classify first-time intrusion encounters without the requirement for an a priori database of 

intrusion signatures. Developing proactive network defense systems is an open and rarely 

explored problem. One ID domain algorithm currently being researched is the AIS. 

Conceived in 1986 [Farmer86], the AIS is inspired by and modeled after the human 

biological immune system (BIS) for its ability to provide the body the highest degree of 

protection from invading organisms. Many properties of the BIS are of a growing interest 

to computer scientists and engineer, particularly those involved in computer security, for 

the following reasons [DCVZ99]: 

1. UNIQUENESS. Each individual possesses its own IS, with its own capabilities 

and vulnerabilities; 

2. FOREIGNER RECOGNITION. The harmful non-self molecules not native to the 

body are recognized and eliminated by the IS; 

3. ANOMALY DETECTION. The BIS can detect and react to pathogens never 

before encountered by the body; 

4. DISTRIBUTED DETECTION. BIS cells are distributed throughout the body, 

operating autonomously (no centralized control); 
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5. IMPERFECT DETECTION (noise tolerance). Exact pattern recognition of 

pathogens is not required, allowing for variant detection; 

6. REINFORCED LEARNING AND MEMORY. Upon disposition of a new 

pathogen, future encounters are responded to more efficiently and effectively. 

Translating these BIS properties into AIS features provides the following benefits for our 

algorithm:  

1. AISs ARE NATURALLY REACTIVE. Signature-based IDSs allow previously 

unknown nefarious packets to enter and compromise the network because their 

signature was not in the database. On the other hand, an AIS, which detects 

abnormal traffic based only on known normal traffic patterns, has the potential to 

detect, classify and neutralize a newfound intrusion from entering the network 

(which can be argued as a potential cure to the Zero-Day Attack—an attack 

occurring on the same day or before a defense is created [Porter06]); 

2. AN AIS HAS THE ABILITY TO DETECT BOTH EXACT AND VARIANT 

ANOMALY SIGNATURES. Signature-based IDSs require an exact pattern 

match, allowing mutated variants of that anomaly into the network. An AIS, 

conversely, seeks both exact and variant patterns of anomalous traffic, based on a 

user-defined threshold. When anomalous traffic is confirmed, the detector’s data 

structure slightly changes to include knowledge of this newfound anomaly’s 

structure; 

3. AN AIS DOESN’T REQUIRE AN A PRIORI DATABASE OF KNOWN 

ATTACK SIGNATURES. Rather, an AIS generates a manageable-sized 
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population of detectors that are initially trained through exposure to known 

normal traffic and then released to seek network event patterns that do not match 

such traffic. By having the detector retain the knowledge of newly discovered 

anomalies dismisses the need for a database of infinite growth size. 

However, AISs also have limitations, which should be considered in choosing its 

application domain. De Castro, classifying the AIS within “nature-inspired computing,” 

cites nature-inspired computing as [Castro05]: 

1. having difficulty in analyzing convergence criteria and optimality of solutions; 

2. sometimes not scalable; 

3. sometimes inefficient. 

Because of today’s exponential proliferation of new and mutated malicious 

signatures, serially-executed algorithms and deterministic string matching are becoming 

less efficient, allowing for certain strings to escape into the system. The Symantec 

Internet Security Threat Report for the first half of 2004 reports alarming growth rates in 

malicious signatures in that timeframe’s last three years; particularly with regard to 

viruses, worms1 and bots2 [Symantec04]. 

                                                 

1 A computer worm is a self-replicating computer program that sends copies of itself to other computers 
while executing itself, without user intervention. Unlike viruses, they do not attach to computer files. There 
are several worm classifications, including instant messaging, file-sharing network and Internet worms 
[Worm07]. 
2 Bots, short for “robots,” are programs that are covertly installed on a user’s machine in order to allow an 
unauthorized user to control the computer remotely. Bots are used for a wide variety of malicious purposes, 
such as information theft, stealing application serial numbers, or stealing user passwords. They also 
facilitate distributed denial-of-service attacks [Symantec04]. 
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Figure 1 shows the exponential growth trend of reported virus and worm signatures while 

Figure 2 justifies the popularity of signature variants, as equally exponential proliferators. 

 

Figure 1: Virus and worm growth trend: Jan 01 – Jun 04 [Symantec04] 
 
 

 

Figure 2: Bot variant growth trend: Jan 03 – Jun 04 [Symantec04] 
 

Symantec’s most recent report, which covers the first half of 2006, reports a 

continued upward trend in malicious activities, i.e., denial-of-service (DoS) attacks 
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(Figure 3), and new vulnerabilities (Figure 4), maintaining consistency with their 2004 

report [Symantec06]. In Figure 4, Symantec comments that the number of vulnerabilities 

documented in this reporting period is higher than in any other previous six-month period 

since it began tracking in January of 2002. 

 

Figure 3: Denial-of-Service attack trend, January-June 2006 [Symantec06] 
 

 

 

Figure 4: New vulnerabilities trend, January-June 2006 [Symantec06] 
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1.2 Research Focus 

Computer systems are dynamic, with continually changing patterns of behavior, 

such as management of software applications and users, and continually changing 

configurations and security policies [HF00]. These and other changes allow intruders to 

chart methods of gaining improper system access. Traditional computer security 

mechanisms are mostly static, unable to easily cope with the ever-changing environment. 

Thus, an adaptive system is needed to track both changes in the environment and the way 

in which intruders and viruses exploit computer systems. The AIS is the algorithm of 

choice because the architecture of an IDS is similar to the BIS—a parallel and distributed 

adaptive system [CC05]. The BIS utilizes volatile memory and is capable of learning and 

retrieval of information from such memory in recognition and classification tasks. 

Specifically, it learns to recognize present and past patterns and its global and dynamic 

behavior impacts many local interactions. These BIS features, in turn, provide robustness, 

fault tolerance, adaptability and dynamism, which researchers are attracted to emulate. 

With regard to the algorithm, the multiobjective context is preferred to the single-

objective because reality dictates the ID problem has additional objectives, such as 

efficiency, effective shaping of the detector for complete search space coverage and 

measuring individual false detection rates of individual attacks. 

1.2.1 Problem Domain Scope 

The ID problem domain is too large for only one algorithm’s application. It 

ranges from network-based sniffer systems, responsible for Enterprise-wide coverage, to 

individual host-based sensors that monitor the activity and usage patterns of a single 
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system on the network. The algorithm derived from this research addresses ID on the 

scale of a notional Air Force Base [Mahoney03], defined by the data set, introduced in 

Section 5.3. 

A sub-problem of this domain is the maximization of the inspection coverage of 

all incoming packets. Ideally, the algorithm should inspect all incoming packets. 

However, the search space for the current version of the Internet Protocol (IPv4) payload 

content is a massive 25665535 possible strings—too many to search either by deterministic 

or stochastic means [Williams01, Warthog01]. Hence, our inspection method must be 

narrowly and heuristically focused to those areas of the search space most profitable to 

malicious code. For example, there exist only few places within a network traffic packet 

that facilitate delivery of executable attacks. 

One other area of concern is the detection of variants (mutations) of nefarious 

strings. Slight mutations of existing strings may illicitly enter the system just as easily as 

a new string could, due to exact signature matching rules. Consequently, a new signature 

string must be crafted and stored in the database for every possible combinatoric 

mutation of the known attack string. This introduces storage overhead that could prevent 

a newly discovered attack signature from being stored. AISs require no more storage 

space to detect variants than exact pattern matches, depending on the defined matching 

threshold. However, the risk to variant matching is the possibility of declaring a known 

event as anomalous. Hence, detectors require constant maintenance in terms of mutating 

their location and shape to best mitigate fratricide. 
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1.2.2 Approach 

This research advances the existing work of two AIS-motivated evolutionary 

algorithms (EA) applied to the ID problem. These algorithms possess exclusive strengths 

that we conjecture could be extracted and combined into one algorithm, for synergistic 

effectiveness. Upon successful translation of each algorithm’s native C programming 

language to Java, and their subsequent integration into a single Java-based algorithm, this 

new algorithm is extended to independently execute in a distributed island model 

environment of computers, having the ability to evaluate a data set in a data-

decomposition manner [GGKK03]. Whether executed as standalone or distributed, our 

algorithm is then provided ID data set input for experimental validation. While this 

algorithm is intended to augment an IDS, the scope of this research allows for only 

validating such an algorithm’s proof-of-concept and execution.  

1.3 Research Hypothesis 

It is our hypothesis of this research that a “useful” AIS-inspired MOEA can be 

developed, achieving two independent objectives with regard to detectors: 

1. best classification fitness of normal and abnormal traffic; 

2. optimal hypervolume size. 

The term “useful,” in this hypothesis, is defined by Garrett in his search for how to 

evaluate an AIS [Garrett05]. Usefulness criteria is based on how distinct and effective a 

computational method is. If distinctive, it possesses unique symbols or methods that can 

be transformed to become the same as another method but that its symbols, expressions 

and processes, as a whole, cannot be made equivalent by another. Effectiveness implies 
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the accuracy level of obtained solutions in the effort to reach a desired result, or effect, 

while efficiency stresses minimal computational effort (i.e., time) and resource 

consumption (i.e., space) by the algorithm [CVL02]. If effective, the AIS must provide a 

unique means of obtaining a set of solutions, provide better results than other existing 

methods in a shared benchmark test, or provide more expedient results than other 

methods in a shared benchmark test. 

Through multiobjectivity, a set of globally minimized solutions, rather than a 

single solution, should provide a greater range of options to network administrators in 

choosing detectors to employ in future ID applications. 

Objectives 

Our hypothesis validity is based on a set of quantitatively and qualitatively 

measurable goals, which is, in turn, based on the outcome of our set of experiments. 

Given this, our hypothesis goals are: 

1. VALIDATE THE MIGRATION OF EXISTING C-BASED AIS 

ALGORITHMS INTO THEIR JAVA-BASED EQUIVALENTS. Due to the 

Java programming language’s growing ubiquity [Java04], we decide to continue 

the work of two existing, C-language AIS algorithms in the Java programming 

language. Once accomplished, output effectiveness of the Java-based algorithm 

should mirror that of its C parent. If it does, we have laid the foundation to 

continue their validated work; 

2. ATTAIN THE HIGHEST CORRECT CLASSIFICATION RATE 

POSSIBLE FOR THIS PROOF-OF-CONCEPT ALGORITHM. This 
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objective seeks the highest detection and classification effectiveness rate of 

detectors. This methodology can generate two types of errors: false-positives 

(referred to as Type-I) or false-negatives (referred to as Type-II) errors. False 

positives are declared conditions or findings that do not exist, such as indicating a 

normal event as abnormal. Classifying normal as abnormal is synonymous to the 

BIS side-effect of autoimmunity, where the BIS attacks and kills its own cells—a 

result of improperly trained detectors (see Section 2.2.1). False negatives are 

failures to recognize a condition that existed, such as declaring an abnormal event 

as normal. This results in unrecognized and uninhibited harm in a system. The 

higher the effectiveness of a detector, the lower this objective’s score. Higher 

scores resulting from false detections are heuristically determined based on the 

type and intensity of the detector’s error; hence, we desire the lowest overall score 

possible for the detector population which translates into its highest effectiveness; 

3. IDENTIFY A KNOWN OPTIMAL DETECTOR HYPERVOLUME. This 

objective seeks the optimal hypervolume (i.e., size or affinity threshold) of 

detectors. Research has shown that detector effectiveness is impacted by detector 

size [McGee07] (and shape [Shapiro05, BDNG06]). Detector size, should not be 

too high as to react to normal traffic and not too low as to not react to abnormal 

traffic [Middlemiss06, McGee07]. Hence, in addition to classification fitness, we 

also desire a detector size deviation value as close to zero as possible; 

4. VALIDATE AIS COOPERATIVE COMMUNICATION WITHIN A 

DISTRIBUTED ENVIRONMENT. The components that compose the BIS are 
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distributed, operate autonomously and cooperatively communicate; hence, it 

should be modeled as such. As AIS detectors are rewarded for correct 

classification and detection, the AIS subsequently broadcasts its fittest detectors 

to all listening AISs, for inclusion consideration into their population. Validation 

of this objective involves three observable steps: 

a. verification the fittest detectors are broadcast to the subnet;  

b. acknowledgement from listening recipients; 

c. insertion or rejection of that detector into the AISs exclusive population of 

fittest detectors. 

1.4 Benchmarks of Validation 

As Figure 1 and Figure 2 illustrate, nefarious computer traffic is exponentially on 

the rise, Figure 2 further illuminates the disturbing truth that some of this traffic is meant 

to travel and execute covertly. Hence, we desire benchmarks and experiments that 

measure not only overall success levels but also the effectiveness of detecting individual 

attacks, for the sake of maximizing our level of network security. 

Our hypothesis objectives are measured in the following manner: 

1. FIRST OBJECTIVE: Our first objective is measured by the range of results 

equality between the existent C algorithms’ output and their Java-translated 

equivalent; 

2. SECOND OBJECTIVE: As our algorithm is intended to be executed within a 

dynamic and distributed network, we require a pre-defined data set that simulates 

this activity. Our chosen real-world data set, containing both normal and 
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abnormal traffic, includes a supplementary truth set detailing the location and 

duration of abnormal traffic (see Appendix B). By comparing true and false 

positives and negatives, plotting the classification of each identified attack and 

using multiobjective graphing tools, we can measure our success level; 

3. THIRD OBJECTIVE: This research found no current studies of optimal affinity 

threshold value. In Chapter 5 experimentation, an optimally known affinity 

threshold value is empirically derived based on post-execution effectiveness of 

the data set. Consequently, we desire post-execution detectors that deviate as little 

as possible from this value. Hence, this objective seeks individual detector affinity 

threshold deviation, from the empirically-derived value, as close to zero as 

possible; 

4. FOURTH OBJECTIVE: The fourth objective is determined through observation 

of multiple AISs communicating to each other in the protocol specified in this 

objective’s definition, above. 

1.5 Thesis Overview 

This chapter provides the problem motivation and meta-level approach behind 

solving it. Chapter 2 provides the background insight into understanding the basic 

concepts involved in the scope of this research. Chapters 3 and 4 detail the high-level 

design methodology and low-level design implementation employed in achieving our 

hypothesis. Chapter 5 presents the experimental analysis of our constructed algorithm, 

concluded by the Chapter 6 summary of research impact and future direction of this 

work. 
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II. Literature Review 

 

The first step in validating our hypothesis is having an understanding of ID: the 

history behind it, the lessons learned of past endeavors in solving its problem domain and 

considering which avenues of current research appear most fruitful in pursuing. This 

chapter introduces the history and fundamental concepts of anomaly detection, search and 

evolutionary algorithms, the BIS and solving multiobjective problems to help the reader 

understand the background behind developing an AIS-inspired MOEA. Section 2.1 

introduces the impetus of our algorithm design—the intrusion detection system, with its 

strengths and weaknesses.  Section 2.2 reviews the structure and execution of the BIS that 

an AIS attempts to computationally model.  Section 2.3 reviews the history and advances 

of the AIS, to date. Section 2.4 discusses the search algorithms applied to anomaly 

detection. Section 2.5 explains the need for a multiobjective search algorithm over a 

single-objective. Section 2.6 contrasts the single-objective from multiobjective 

optimization, with Section 2.7 explaining how to measure multiobjective results. 

2.1 The Intrusion Detection System 

IDSs are designed to monitor activities on a network and recognize anomalies that 

may characterize misuse or malicious activity in the form of exact pattern matching and 

statistical analysis [Chen04]. This recognition idea can be traced back to an early host-

based IDS prototype called the Intrusion Detection Expert System (IDES) by James 

Anderson [Anderson80] and sponsored by the U.S. Navy in the mid-1980s [Navy80]. An 

IDS consists of three components: monitor, analyzer and responder. Data is collected by 
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monitoring activities in the host or network. When a suspect event meets a user-defined 

threshold, a response is triggered. ID approaches can be classified according to 

monitoring location as host-based, network-based, or hybrid. IDS are further classified by 

their data analysis approach as being either signature- or anomaly-based detection 

systems. 

2.1.1 IDS Topologies 

Before the advent of internal corporate networks’ connection to the public 

Internet, the first-generation IDS was host-based; meaning that an IDS was attached to 

and monitored a single computer. Subsequently, network-based IDS, executed from a 

computer connected to a switch or router, are responsible for the monitoring of all 

passing network traffic. The topology chosen, whether host-, network-based or a hybrid 

thereof, is driven by the network size and partition(s). 

Host-based IDS 

Host-based IDSs operate on information collected from within an individual 

computer system.  From this vantage point, the IDS can effectively monitor all system 

activities, observe the outcome of abnormal activity, and execute real-time measured 

response. They normally rely on two system information sources: the operating system 

audit trails and system message logs. These data are taken together, commensurate with 

the IDSs own data, to provide reports to the system administrator. Advantages of a host-

based IDS include: 

1. their locality to the system they are installed on enables their ability to detect 

certain attacks not able to be seen by a network-based IDS; 
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2. not being hindered by encrypted network traffic as all data is unencrypted before 

transmission and post-arrival; 

3. unaffected by switched networks; 

4. their operation on local operating system audit trails helps detect Trojan Horses3 

or other software integrity breach-type attacks. 

Disadvantages of a host-based IDS include: 

1. their local scope of responsibility prevents their monitoring of network activity 

(e.g., malicious network scans or surveillance); 

2. configuration management-prohibitive, as every IDS installed on an individual 

workstation or server must be individually managed; 

3. susceptible to certain DoS and unmonitored internal or external-threat attacks, 

allowing for unreported disabling of the IDS; 

4. the size of the audit trail utilized by the IDS (i.e., the larger the trail, the more data 

an IDS has to make informed decisions about authorized activities) is proportional 

to the amount of space required of the individual computer; 

5. local operating system resources are required, thus inflicting a performance cost 

on a monitored system. 

                                                 

3 A Trojan Horse portrays itself as something other than what it is at the point of execution. It neither 
replicates nor copies itself, but causes damage or compromises the security of the computer. The malicious 
functionality of a Trojan Horse may be anything undesirable for a computer user, including data 
destruction or compromising a system by providing a means for another computer to gain access, thus 
bypassing normal access controls, http://www.symantec.com/avcenter/refa.html#t. 
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Network-based IDS 

In the interest of centralized management and clandestine IDS sensor (or host) 

placement, the majority of commercial IDS matured to network-based IDSs (NIDS). 

NIDS detect attacks by analyzing network packet traffic along a network segment or 

switch, enabling the monitoring and protection of multiple hosts by a single sensor. NIDS 

consist of a set of single-purpose sensors placed at multiple, distributed points in the 

network. The sensor’s purpose is to monitor and perform analysis of network packet 

traffic and report attacks back to the central management agent. These sensors may 

operate in passive stealth (promiscuous) mode in order to make it more difficult for the 

attacker to specifically seek and identify them. Advantages of NIDS include: 

1. a strategically placed few sensors can monitor a relatively large network of hosts; 

2. deployment of network-based sensors does not interrupt individual host operation 

or network communication; 

3. ability to be made secure against attack and invisible against detection. 

Disadvantages of NIDS include: 

1. the volume of network traffic is inversely proportional to the percentage amount 

of traffic the IDS is able to analyze for anomalies. At peak times of network 

usage, the IDS may become saturated and unable to inspect all packets, 

potentially missing a virus or intrusion-related attack packet; 

2. increasing the efficiency of packet inspection (in an effort to make contact with 

all packets) forces vendors to use fewer resources, resulting in the detection of 

fewer attacks (lowered effectiveness); 
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3. cannot inspect encrypted packets.  This problem may require the ability (and 

computational overhead) of integrating (versus bypassing) encryption inspection 

capability, as more companies move toward virtual private networks (VPN); 

4. cannot conclude whether or not an attack was successful; only whether or not an 

attack was present. The human network administrator must conclude the level of 

success; 

5. susceptible to instability and crash due to the inability to handle malformed or 

fragmented packets, accidental or malicious; 

6. many advantages of network-based IDSs don’t apply to modern-day switches due 

to the switch’s inability to provide universal port monitoring.  This limits the IDS 

to monitoring a single host. And even with such capability, a single port to a host 

does not provide a mirror to all ports’ traffic. 

Hybrid IDS 

 Referred to by some vendors as, “an IDS that fills more than one role” and “host-

based intrusion prevention system (IPS),” hybrid IDS (HIDS) combine the functionality 

of a host-based IDS and NIDS into one package [SF07]. It binds closely to the OS kernel 

and services, monitoring and intercepting system calls to the kernel or APIs in order to 

prevent and log attacks [NSS07]. This topology arose in response to modern switches 

preventing all switch traffic from being visible to a single host and NIDS tendency to 

drop packets on high-speed networks. Advantages of HIDS include: 

1. effective blocking of attacks against an individual host and its application level; 

2. ability to work online with encrypted networks [WS07]. 
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Disadvantages of hybrid IDS include: 

1. future OS upgrades could cause problems, based on the OS binding [NSS07]; 

2. required to be deployed to every host [LJ07]. 

2.1.2 Signature and Anomaly Detection Methods 

IDSs make the distinction between malicious and non-malicious packet traffic 

based on either a signature (signal) or anomaly (noise)-based configuration to properly 

identify malicious traffic patterns. In signature-based detection the IDS targets a packet 

known to be anomalous, is the technique most used by commercial systems. In anomaly 

detection the IDS hunts for patterns, or signature fragments, of known anomalous packets 

is the subject of this research. While there are strengths and weaknesses to both, most 

implementations use a hybrid approach where the preponderance of analysis is signature-

based. 

Signature-based detection 

By definition, signature (or misuse) detectors look for events that exactly match a 

pre-defined pattern or signature that describe a known attack or intrusion. These pre-

defined (known) signatures are maintained in a database that the detector references. 

Hence, the effectiveness of the detector is limited to the number of signatures stored. 

Sophisticated improvements to this method of detection involve leveraging a single 

signature to detect sets of attacks. Advantages of signature-based detection include: 

1. exact pattern matching (vs. anomaly-based) has the potential for the fewest 

number of false positives (alarms) and, thus, provides the most effective diagnosis 

as to the specific attack or technique; 
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2. accurately provides system administrators (of any level of experience) an efficient 

way to track security problems, enabling them to prioritize their specific security 

measures. 

Disadvantages of signature-based detection include: 

1. exact pattern matching restricts detection to only those exact signatures. Hence, 

the signature repository must be continually updated; 

2. detecting tightly-defined signatures prevents the detection of even slight variants 

of that defined signature. 

Anomaly-based detection 

Anomaly detectors are paradoxically different from signature-based in that, by 

definition, analyze known good (or self) traffic over a period of time versus being 

provided a database of known malicious (or non-self) signatures in order to effectively 

profile anomalous activity within a network. These profiles represent the normal behavior 

of human users, computer hosts, and network traffic. In this way, incoming data is 

analyzed to determine if its signature or a variant of deviates from a pre-established norm 

or exceeds a threshold. This is the method of detection this research focuses on 

improving. Measures and techniques involved in anomaly detection include: 

1. THRESHOLD DETECTION. Certain quantitative attributes of user or system 

activity are recorded as counts with a pre-defined threshold of what is considered 

acceptable (normal) behavior. Counts can record, e.g., number of file accesses, 

failed login attempts, CPU utilization by a specific process.  This can be a fixed or 

heuristically updated number; 
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2. STATISTICAL MEASUREMENT. Includes both parametric, where the 

distribution of the profile attributes meets a particular threshold; or non-

parametric, where the distributed of such attributes is heuristically learned, over 

time; 

3. RULE-BASED MEASURES. Similar to non-parametric statistical measures in 

that observed activity defines acceptable usage patterns but differs in that these 

patterns are rule-based versus numeric thresholds; 

4. OTHER MEASURES. Today’s research involves artificial neural networks, 

genetic algorithms (GA), and computational BIS models.  Our research involving 

MOEAs and AISs applies to this area. 

Unfortunately, as opposed to signature-based pattern matching, anomaly-based 

can produce a large number of false positives, as human and computer behavior can be 

unpredictable. However, conversely, pattern-based matching has the ability of detecting 

unknown variants that may not have otherwise been detected by signature-based IDSs. In 

addition, because anomaly-based IDSs identify based on threshold, they require human 

confirmation of their discovery before reacting—a process called co-stimulation. 

Interestingly, anomaly-based detectors can generate heuristic outputs and signatures, 

based on its discoveries, which can be used by signature-based IDSs to strengthen their 

effectiveness. This is one impetus for hybridizing IDS implementations. Advantages of 

anomaly-based detection include the ability to: 

1. detect unusual network behavior without specific or exact knowledge of the attack 

or signature; 
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2. automate the process to produce information to augment signature-based IDSs, 

saving human operator time and resources. 

Disadvantages of anomaly-based detection include: 

1. requires an initial learning curve: initialization within a typically sanitized (all 

self) network to train self detectors to discriminate between self and non-self 

network traffic; 

2. always a greater probability of false detections over the signature-based method; 

3. provides only an approximate solution whereas signature-based ensures exact 

matching. 

2.2 The Human Biological Immune System (BIS) 

The human biological immune system (BIS) is respected as a highly evolved, 

decentralized, robust system, charged with providing the human body with the highest 

degree of protection against various invading organisms (e.g., bacteria, viruses and 

parasites)—both internal and external to the body [Greensmith03]. It combats 

dysfunction from a body’s own cells and tissues, known as infectious self, and the action 

of exogenous (outside-body) infectious microorganisms known as infectious non-self 

[DCVZ99a]. Collectively, these non-self invaders are formally referred to as pathogens. 

The non-self pathogen identified in computational circles is commonly referred to as the 

Antigen (Ag), defined as any molecule recognized by the BIS [Timmis02]. Protection 

against Ags is achieved through the orchestrated execution of many BIS components, 

with the most prominent being Antibody (Ab) or self detectors. The BIS performs its duty 
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through recognition and removal of the Ag from the body based on a complimentary 

matching between an Ab and the Ag, as depicted in Figure 5. 

 

 

Figure 5: Example of Ab-Ag complimentary matching [adapted from Timmis04] 
 

Without the BIS, death of the body from infection would surely result. Hence, the 

BIS cells and molecules must maintain constant surveillance for non-self organisms. 

When a pathogen is detected for the first time, it is not only eliminated but its pattern, or 

signature, is retained in BIS memory so that repeated exposures to the same or variant 

pathogen are prosecuted more efficiently. 

In medicinal history, immunology is a relative new biological science. Its origin is 

traced back to west-England country doctor Edward Jenner who, in 1796, discovered that 

human inoculation with the related cow-pox virus built immunity against the deadly 

scourge of smallpox—a frequently lethal disease. Jenner named this process 

vaccination—the inoculation of healthy individuals with weakened or non-lethal samples 

of disease-causing agents aiming at educating and consequently strengthening BIS 

defenses against these specific agents. 

Later in the 19th century, following on Jenner’s discovery, doctor Robert Koch 

proved that infectious diseases were caused by pathogenic organisms, each producing its 
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own infection or pathology. This validation led to the classification into categories of 

disease-causing organisms called pathogens. Jenner and Koch’s discoveries, taken 

together, formed the basis of the science of immunology. In the 1880s, Louis Pasteur 

used this knowledge to develop the second vaccine used against chickenpox. He called 

his inoculation an antirage. During this same period, Elie Metchnikoff discovered 

phagocytosis and other cellular components, helping define the BIS architecture. 

In 1890, Emil von Behring and Shibasaburo Kitasato made the critical discovery 

that the serum within inoculations contained agents called Abs that bind to infectious 

agents including Ags and explosively reproduce after exposure to the Ag. At the same 

time, Paul Ehrlich formulated the side-chain theory which conjectured the surfaces of 

white blood cells, such as B-cells, are covered with several side-chains, or receptors. 

These receptors form chemical links with the complementary links of encountered Ags, 

allowing for Ab-Ag binding. In the 1950s, McFarlane Burnet proposed the clonal 

selection theory or clonal selection principle to help explain the widely disputed 

circumstances around Ab formation and reproduction [Burnet50], further detailed in 

Section 2.5.2. An unexplained corollary to Ab reproduction is the possibility of Abs 

reacting to (destroying) self-antigens, which would weaken the BIS. In 1971, Niels K. 

Jerne argued that the elimination of self-reactive cells would constitute a negative 

selection mechanism—a method for eliminating Abs which react to self. 

In the last few years, most biological immunology is focused on apoptosis, 

antigen presentation, cytokines, immune regulation, memory, autoimmune diseases, 
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DNA vaccines, and maturation of the immune response [DCVZ99a]. Table 1 summarizes 

the research explained in this section. 

 

 
Table 1: History of immunology [DCVZ99a] 

 

The organs and tissues that compose the BIS are distributed throughout the body 

and known as lymphoid organs once they begin production, growth, and maturity of 

lymphocytes—the leukocytes that represent the primary BIS operator through recognition 

and elimination of pathogens. Lymphocytes are composed of two types of cells: 

1. B lymphocyte (B-Cell): their main function being the production and secretion of 

Abs as a response to exogenous proteins (i.e., bacteria and viruses). Each B-cell is 

programmed to produce a specific receptor-arranged Ab—a property named 

specificity. The successful binding of this B-cell protein to another protein is the 

signal to other cells that the bound protein must be destroyed; 
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2. T lymphocyte (T-Cell): named for their maturation within the thymus [Dreher95], 

they regulate the actions of other cells (i.e., B-cells) and attack host-infected cells. 

Lymphocytes become stimulated after an Ag-related interaction, leading to their 

activation and proliferation. Each lymphoid organ (Figure 6) has a specific defense 

function. Our area of research is limited to only a few of these organs: 

1. bone marrow: the soft tissue within the inside part of the longest human bones, 

responsible for immune cell generation; 

2. lymph nodes: act as filters, with an internal honeycomb of connected tissue filled 

with lymphocytes, where each node stores immune cells, including B and T cells 

(and where adaptive immune response occurs); 

3. thymus: place where few cells migrate to, from the bone marrow, where they 

reproduce and mature into T cells, capable of producing an immune response. 

 

Figure 6: Biological Immune System anatomy (lymphoid organs) 
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The BIS architecture is a distributed, multi-layered defense system without need 

of centralized control. The three layers of protection are divided as follows, in Figure 7 

[Janeway97; Rensberger96, Hofmeyr00]: 

1. physical barrier (skin): our skin is the firewall that protects the body from outside 

invaders, nefarious or otherwise. The respiratory system helps in Ag eradication. 

Its defenses consist of trapping irritants in nasal hairs and mucus, ejecting them 

through the act of coughing and sneezing. Overall, it is able to stop some 

pathogens from entering, however some are able to illicitly enter and confront the 

second barrier; 

2. biochemical barriers: bodily fluids, including saliva and tears, contain enzymes 

that destroy these irritants. Further, stomach acid and temperature kills most 

microorganisms ingested in food and liquids. These are examples of living 

conditions that most microorganisms cannot survive in; 

3. innate and adaptive immune system [Timmis02]: There are two inter-related 

systems responsible for identifying foreign material within the body. Their 

functions are described in the next two sections. 

 



 

29 

 

Figure 7: BIS multi-layer defense structure 
 

The Innate Immune System 

The innate BIS is the first line of defense against known microorganisms. This 

means it does not have to first learn about these invaders because such microorganisms 

are known about at BIS birth. Hence, such internal pathogens are immediately 

eliminated, ensuring survival at such an immature stage in life. While performing 

separate functions from the adaptive BIS, the innate BIS is critical in initializing and 

controlling the adaptive response by controlling/eliminating infection at its level before 

reaching the adaptive level. Further, the innate BIS plays a role in distinguishing between 

the self and non-self and ensures that microorganism structures it recognizes are distinct 

from the self-antigens in order to prevent attacking self. The innate BIS can be 

computationally equated to a basic IDS coupled with a complementary database of 

known pathogenic (i.e., virus) strings. This half of the IS is not modeled within an AIS 

(or our algorithm) but is recommended, in Section 6.2.1. 
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The Adaptive Immune System 

All living beings possess a level of resistance to pathogens. The level of resistance 

is dependent upon the type of organism. If the pathogen is not eliminated by the innate 

BIS, it then faces the adaptive BIS. The function of the adaptive BIS is two-fold: defeat 

the pathogen and adapt to its structure so it and any variants may be more efficiently 

prosecuted in future encounters by lymphocytes—the most important cells of the 

adaptive BIS. This is computationally equivalent to an IDS without a database of known 

non-self strings scanning for abnormal activity and adding discovered non-self strings to a 

database. Each newly produced lymphocyte (called naïve lymphocytes for their lack of 

involvement in an immune response) carries a structure of Ag receptors of a single 

specificity. The arrangement of this specificity is determined during lymphocyte 

development in the bone marrow and thymus; hence, the chosen structure is combinatoric 

and specific only to a single Ag. The core of the adaptive immune response is explained 

by the clonal selection theory, introduced in section 2.2.2. 

2.2.1 Pattern Recognition, Positive Selection and Negative Selection 

Pattern recognition is one of the most important functions of the BIS and is made 

possible by the Ag-recognizing surface receptor molecules of both the B- and T-cells. 

Immune recognition occurs at the molecular level and is based on the complementarity 

between the binding region of the Ab receptor, called the paratope, and a portion of the 

Ag called the epitope [Timmis02] (Figure 8). While Abs only have a single receptor 

(specificity) for which to bind to other proteins, Ags have several distinct, 

complementary epitopes, meaning that different Abs can recognize a single Ag. 



 

31 

 

Figure 8: Antigen binding by multiple antibodies 
 

Distinction between what is self and non-self, which is unknown a priori, is 

determined by an Ab’s immunologic idiotopes—epitopes that can be recognized by the 

Ag binding sites on other Abs. Hence, where Abs bind strongest to Ags of 

complementary epitope arrangement, an Ab can potentially identify another Ab if their 

receptor arrangement matches. If the BIS cannot perform this distinction, it may be 

triggered against self, causing autoimmune diseases. Conversely, not responding to non-

self introduces an unacceptable level of tolerance. To solve this self-non-self 

discrimination problem, the BIS performs positive selection and negative selection. 

Positive Selection 

Positive selection ensures the “rescue from cell death” of lymphocytes effective in 

the Ag recognition process by removing those lymphocytes with ineffective or 

unproductive receptors [Timmis02]. Hence, Abs producing false detections are 

eventually removed, allowing the effective Abs the space to survive and clone. This 

maintains a strong, controlled-size repertoire (population). 

Negative Selection 

Negative selection works to prevent lymphocyte fratricide by removing those 

lymphocytes bearing anti-self receptors. Such lymphocytes become self-reactive and 
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attack self, potentially resulting in an autoimmune disease. To combat this, the BIS 

purges the lymphocyte from the repertoire through a lymphocyte-antigen interaction that 

results in the death (anergy) of that lymphocyte [Timmis02]. Put another way, an Ab that 

attacks self, believing it has detected non-self, is attacking its own system and must be 

removed as quickly as possible. 

2.2.2 Clonal Selection Theory 

In 1959, McFarlane Burnet proposed the selective theory that remains 

scientifically unchallenged as to the most plausible reason for the actions of the adaptive 

BIS [Burnet50]. The crux of McFarlane’s conjecture is that the existence of many cells 

can produce differing Abs of distinct specificity and similar receptor arrangement as its 

parent cell. Figure 9 visualizes the Clonal Selection Theory (or Clonal Selection 

Principle) during execution. After an Ab binds to an Ag of complementary receptor 

arrangement (I), accessory (nearby) cells provide a second signal (or co-stimulatory 

signal) to allow the Ag to stimulate the Ab. This stimulation causes the Ab to activate 

and proliferate itself (II) as a clone—a cell or set of plasma or effector cells (that define 

the clone size) that are the progeny of the parent cell (III). Further, the B-cell Abs can 

further differentiate into long-lived B-memory cells (which cannot manufacture Abs) 

(IV). This initial contact between an Ab and Ag is called primary response. Based upon 

this clonal selection theory, the lymphocytes undergo a process similar to Darwin’s 

(1859) natural selection. 

The mutational and selectional events in the B-cell clonal selection process allow 

lymphocytes to add to their collection (repertoire) of known non-self and increase the Ab-
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Ag affinity, thus increasing the scope and response time in which known Ags are 

recognized. Affinity is defined as the strength of binding between the Ab receptors and 

Ag epitopes. Repeated contact with Ags among Abs that matured from the primary 

response allow Abs to prosecute Ags and their possible variants more efficiently and 

effectively, in future encounters. This is known as the secondary response [Timmis02]. 

 

(I)

(II)

(III)

(IV)

 

Figure 9: The Clonal Selection Principle 
 

Immune Learning and Memory 

Recognition of Ags is not enough; the BIS must have sufficient resources (i.e., 

storage) to remember future encounters with new Ags, in order to sustain protection of 

the body. In the BIS, learning involves raising the population size and the affinity of 

those lymphocytes proven effective at recognizing Ags. In handling storage constraints, 

increases the number of some clones may mean the decrease (forgetting) of others. 

However, this does not mean the number of lymphocytes has to remain a constant. 
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Hypermutation and Affinity Maturation 

The repertoire of Ag-activated B-cell Abs is improved and diversified via two 

functions: hypermutation and receptor editing (or affinity maturation of the immune 

response) of only the high-affinity Abs. Abs involved in the secondary response typically 

have a higher affinity than those of the primary response. This affinity maturation 

phenomena is made possible through somatic hypermutation. During clonal expansion, 

random changes are performed on the receptor arrangement of the Ab with the intent of 

increasing the affinity of the Ab and adding it to the memory pool. However, one must be 

aware the risk of this random mutation may actually result in a non-functional or self-

reactive Ab. 

George and Gray [GG99] argued for a second diversifying function during affinity 

maturation—Ab receptor editing. They conjectured this would offer the ability to escape 

local optima on an affinity landscape. Figure 10 illustrates an example of the purpose of 

receptor editing [DCVZ99a]. Here, somatic hypermutation with selection aids in 

discovering the local optima (exploitation), while receptor editing introduces diversity to 

aid in finding the global optimum (exploration), which could be a new candidate 

receptor. 

In summary, mutations aid in exploring local regions while receptor editing can 

prevent premature convergence into unsatisfactory local optima. Hence, successful 

affinity maturation is based upon the complementary roles of these two functions. 
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Figure 10: Example of shape-space representation of an affinity landscape [adapted from 
Timmis02] 

 

2.3 Artificial Immune Systems (AIS) 

The concept of a computational Artificial Immune System (AIS) was introduced 

in 1986 by Farmer, Packard and Perelson [Farmer86] who set out to find efficient 

abstractions of processes found in the human biological immune system. Almost a decade 

later, AIS practitioners such as Forrest [Forrest95], Dasgupta [Dasgupta99], and Timmis 

[Timmis02], were motivated to formalize immunological phenomena to develop 

engineering and computing tools. 

AIS is classified as a GA and falls under the field of Evolutionary Computation 

(EC), defined by Bäck, Fogel, and Michalewicz (who also refer to EC as EA) as, 

“methods of simulating evolution, most often on a computer. The field encompasses 

methods that comprise a populated-based approach that relies on random variation and 

selection” [EC1]. As the AIS is still in its developmental infancy, there currently is no 

standard definition or experimentally validated problem domain application; a claim 
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agreed upon at the 2006 (5th annual) International Conference on Artificial Immune 

Systems (ICARIS). De Castro and Timmis reference three solicited field definitions 

[Timmis02]: 

1. [Starlab]: “Artificial immune systems are data manipulation, classification, 

representation and reasoning methodologies which follow a biologically plausible 

paradigm, that of the human immune system;” 

2. Timmis: “An artificial immune system is a computational system based upon 

metaphors of the natural immune system;” 

3. Dasgupta: “Artificial immune systems are intelligent methodologies inspired by 

the immune system toward real-world problem solving.” 

These gentlemen sum up these definitions in a single general concept: “Artificial Immune 

Systems (AIS) are adaptive systems, inspired by theoretical immunology and observed 

immune functions, principles and models, which are applied to problem solving.” 

Along with this single concept, De Castro and Timmis attempt to come closer to 

defining a standard architecture through their abstract AIS model and three required 

“basic elements” to structure the framework of a biologically inspired algorithm 

[Timmis02]: 

1. REPRESENTATION FOR THE COMPONENTS OF THE SYSTEM: 

a. Detector: an Ab responsible for BIS defense; 

b. Ab: a normal (self) network event; 

c. Ag: a abnormal (non-self) event, recognizable by the BIS and removed by 

the detector; 
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2. A set of mechanisms to evaluate the interaction of individuals with their 

environment and each other (i.e., the environment is shaped by user input stimuli, 

one or more fitness functions, etc.); 

3. Procedures of adaptation that govern the dynamics of the system (e.g., how 

behavior and chromosomal allele structure vary over time through mutation). 

This framework can be thought of as a layered approach (Figure 11). The basis for an 

AIS begins with the pre-defined problem domain, which governs the method of 

representation. Once chromosome data structure representation (e.g., bit string, real-

valued vector, length, etc.) is decided, one or more affinity measures are used to quantify 

interactions of the system’s elements; e.g., Hamming distance measurements applies to 

bit string representation while Euclidian distance is applied to real-valued vectors. The 

top layer, immune algorithms, encompasses those functions that govern the behavior 

(dynamics) of the system; e.g., method of mutation, selection, evaluation, etc. These 

layers, integrated into an algorithm, and given a data set of the application domain lead to 

a potential domain-specific solution. 

AIS

Solution

Application Domain

Immune
Algorithms

Affinity Measures

Representation

 

Figure 11: Layered AIS framework [Timmis02] 
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Initial AIS applications were toward pattern matching, stochastic searchers and 

sorters of complex problems and data structures [Timmis02]. The realm of computer 

network security—specifically the intrusion detection problem—is the newest AIS area 

of research.  De Castro and Timmis offer a scope of popular AIS application areas, 

including but not limited to [Timmis02]: 

1. pattern recognition; 

2. fault and anomaly detection; 

3. data analysis (data mining, classification, etc.); 

4. agent-based systems; 

5. scheduling; 

6. machine-learning; 

7. autonomous navigation and control; 

8. search and optimization methods; 

9. artificial life; 

10. security of information systems. 

2.3.1 Landscape and Ab-Ag Representation 

To computationally model the landscape and actions of the BIS, Perelson and 

Oster [PO79] introduced the concept of shape-space (S), as represented in Figure 12. 

They conjecture a complete repertoire is achieved within the known immune recognition 

patterns. The concept of shape-space is that the degree of binding between a receptor and 

the molecule it binds to, a ligand, involves short-range interactions based on properties 

such as hydrogen binding, electrostatic charge, etc. The molecules should be able to 
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approach and contact an appreciable portion of each other’s surface, binding at 

complementary points. In 1989, Perelson called this receptor arrangement the generalized 

shape of a molecule. Consider that an Ab combining site (paratope) can be expressed by 

P parameters: length, width and height of any valley or ridge of the combining site; its 

hydrogen binding degree; etc. Then, a point in a P-dimensional shape-space specifies the 

generalized shape of an antigen binding region. 

 

 

Figure 12: Recognition region shape-space: a paratope (• ) recognizes any epitope 
complement (X) within surrounding volume Vε  

 

For example, if a human has a repertoire of size N, then its shape-space would 

contain N points within a finite volume V. Each paratope can interact with all epitopes 

within a neighborhood of size parameter ε , called the recognition region of volume Vε . 

The strength (affinity) of an Ab-Ag interaction is measured by its degree of 

complementarity. The less complementary the interaction, the lower the Ab affinity; 

albeit the two may still successfully bind. Because each Ab can recognize all Ags in its 

region and an Ag can have differing epitopes, finite Abs can recognize virtually an 

infinite number of points in Vε [DVCZ99]. 
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Distance-Measuring Techniques 

The Ab-Ag representation (data structure) aids in determining which distance 

measure to use in calculating their degree of complementarity (interaction). 

Mathematically, the generalized shape of a molecule (m) can be represented by a set of 

real-valued coordinates m = <m1,m2,…,mL>, which is regarded as a single point in the P-

dimensional real-valued space (m∈SL⊆ Lℜ ). The affinity value between the two is 

related to the “distance measure” between them, as either strings or vectors, using the 

Euclidian distance or Manhattan distance measure. If the coordinates of an Ab are given 

by <Ab1, Ab2,…,AbL> and the coordinates of an Ag are similar, <Ag1, Ag2,…AgL>, then 

the distance between them is found using Euclidian distance (Equation 1) or Manhattan 

distance (Equation 2). 
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Shape-spaces involving real-valued coordinates and Euclidian distance are called 

Euclidian shape-spaces while shape-spaces involving real-valued coordinates and 

Manhattan distance are called Manhattan shape-spaces [Smith97; S&P88; DeBoer92]. 

The difference between the two is that Manhattan distance presents an interesting 

alternative in the domain of parallel (hardware) implementation of these shape-space 

algorithms [DCVZ99a]. If the molecule’s data structure is represented by a bit string, the 
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Hamming shape-space should be considered for its representation of Abs and Ags as an 

alphabet of size k to the power of its length (sequence) L [Farmer86; Smith97; DBP91; 

S&C92a,b; Hightower95,96; Perelson96; Detours96]. The Hamming distance (Equation 

3) for this type shape-space is defined as 
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When the distance between the two molecules is maximized, a perfect 

complement is achieved and their affinity is maximal. If not maximal, Ab-Ag interactions 

in Hamming space must be measured separately from Euclidian and Manhattan space. 

For Euclidian and Manhattan space, the distance can be normalized (i.e., over parameter 

[0,1]) so that affinity threshold (ε ) would also be within that range. On the other hand, if 

dealing with bit string data structures, then Ab-Ag representation with regard to 

Hamming distance is simpler. Molecular binding occurs when Ab and Ag bit strings 

match each other in a complementary fashion. Hence, the Ab-Ag affinity value is the 

number of complementary bits, determined through application of the XOR operator, as 

exemplified in Figure 13 [DCVZ99a]. 

 

Figure 13: Hamming distance calculation between two binary molecules of length L = 8 
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An alternative (and complement) to Hamming distance is the r-contiguous bit 

rule, which is considered more biologically appealing [DCVZ99a]. This rule measures 

affinity through contiguous symbol matching between two sequences. For example, two 

strings s1 and s2 match under the r-contiguous bits rule if s1 and s2 have the same symbols 

in at least r-contiguous bit positions (specified by the user). An extensive background and 

comparison of the various pattern matching functions can be found in [HWGL02]. 

2.4 Search Algorithms 

While the AIS is our chosen algorithmic framework, its effectiveness and 

efficiency are driven by the search algorithm(s) within it.  The search algorithm(s) must 

be carefully selected as each has its own particular strengths, weaknesses and problem 

domain(s) of application.  Many times, in an attempt to utilize an understood algorithm, 

developers re-shape the problem domain to fit the algorithm. To the contrary, the search 

algorithm must be selected based on the particulars of the problem domain. 

In a given landscape, one seeks either the global optimum value (be it the 

maximum or minimum) or the set of optimal values. Effective search techniques provide 

a mechanism for balancing two seemingly conflicting search objectives: exploration and 

exploitation. Exploration involves maximizing the amount of space searched 

(diversification) while exploitation exploits a best solution in a localized neighborhood of 

points (intensification) within the landscape [DPST06]. The purpose of searching is two-

fold: 

1. at initialization, search for the optimized set (PFtrue) of values to find the fittest 

detectors in order to most effectively detect anomalies; 
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2. after initialization (scanning phase), detectors continuously search for these 

anomalies whose chromosomal composition meet the user-defined matching 

threshold. Consequently, this effectiveness is based on the search algorithms 

chosen for the AIS. In this section, the scope of search algorithms is discussed, 

outlining their strengths, weaknesses, and their domain applicability. 

2.4.1 Deterministic Search 

A deterministic algorithm, informally speaking, behaves predictably. Given a 

specific input, it always returns the same result, passing through the same sequence of 

states in the state machine. These algorithms are the most popular due to their practicality 

and efficiency level when executed on real machines. However, as the search space 

increases in size and dimension, this technique becomes less efficient and feasible. 

Strengths of deterministic search include: 

1. best at efficiently finding the not-guaranteed optimum value within a 

neighborhood; 

2. guaranteed to terminate within infinite time. 

Weaknesses of deterministic search include the inability to: 

1. guarantee that final solution is the global optimum (i.e., the algorithm may have 

found its way into a local optima); 

2. escape local optima (without aid of nondeterminism); 

3. discretely solve nondeterministic Turing Machine polynomial time Complete 

(NP-Complete) problems without approximation. 
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There exist many powerful deterministic algorithms that solve a wide variety of 

problems, such as greedy search, hill-climbing, branch and bound tree/graph search, 

depth- (DFS), DFS with backtracking (DFS/BT), breadth-first (BFS) search, and best-

first search. However, many multiobjective optimization problems (MOP), defined in 

Section 2.6, are high-dimensional, discontinuous, multimodal, or NP-Complete [CVL02]. 

Deterministic methods become ineffective in the face of MOP because they are 

handicapped by the inability to find the complete set of optimal solutions that composes 

the Pareto Front (introduced in Section 2.7). 

2.4.2 Stochastic Search and the Evolutionary Algorithm 

As the complementary of deterministic, stochastic algorithms are characterized by 

randomness and unpredictability. Introducing additional decision-makers into the search 

algorithm, such as probability, system clock time and heuristics, output is no longer the 

same given the same input. Because many real-world scientific and engineering problems 

are combinatoric and multiobjective in nature, stochastic search and optimization 

approaches become preferable to deterministic. However, it should be stressed that one 

advantage of deterministic algorithms over stochastic, such as DFS/BT, is that 

deterministic algorithms are guaranteed to terminate because they always can exhaust the 

entire search space. No stochastic searchers offer this ability [Michalewicz04]. Strengths 

of stochastic search include: 

1. best at approximating the global optimum of a landscape; 

2. ability to escape local optima. 
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Weaknesses of stochastic search include: 

1. computationally inefficient when within the locale of a neighborhood; 

2. without a termination criterion, it executes for countably infinite time. 

Evolutionary Algorithms 

While many stochastic search techniques exist, only an EA has the ability to solve 

multiple problems simultaneously, providing a range of solutions. Other stochastic 

searchers are constrained to one problem at a time, providing a single solution, and are   

discussed more in-depth in Appendix A. An EA is a generic term used to indicate any 

population-based metaheuristic optimization algorithm that uses mechanisms inspired by 

biological evolution, such as reproduction, mutation, recombination, natural selection and 

“survival of the fittest” to perform exploration and exploitation [Bäck96]. EAs are 

initiated with a population of chromosomes—solutions to the search problem we want to 

solve—in order to find the best solution. The data structure of these chromosomes is 

defined by the problem domain. In each generation, a set of probabilistic operators are 

applied to the population of chromosomes, generating new possible solutions.  Some of 

these solutions are then selected to become part of a new, better population.  This 

procedure is repeated until the algorithm has reached a termination criterion defined by 

the user.  
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Dr. Thomas Bäck, a fore-thinker in EA theory and practice, mathematically 

symbolized a standard EA as an 8-tuple [Bäck96]: EA  (I,Φ ,Ω ,Ψ ,s,ι ,μ ,λ ) 

where 

• μ number of parent individuals; 

• λ number of offspring individuals; 

• I = Ax x As is the space of individuals, where Ax, As denote arbitrary sets; 

• Φ  :  I →   denotes the fitness function, assigning real values to each 

individual; 

• Ω   {
1

ωΘ ,…,
z

ωΘ | 
i

ωΘ  : I λ →  I λ }∪ {
0

ωΘ  : I μ → I λ } is a set of probabilistic 

genetic operators
i

ωΘ , each of which is controlled by specific parameters 

summarized in the sets iΘ ⊂ ; 

• s sΘ  : ( I λ ∪ I μ λ+ )→ I μ  denotes the selection operator, which may change the 

number of individuals fromλ  orλ +μ  (depending on the operator’s ability to 

extract good genes from parent to child), whereμ ,λ ∈  andμ =λ  is permitted; 

• ι  : I μ →  {true, false} is a termination criterion for the EA, which can be based 

on a preset number of iterations (generations), an amount of time, or a delta 

convergence threshold; 

• the generation transition function Ψ  : I μ → I μ  (“from generation to generation”) 

describes the complete process of transforming a population P into a subsequent 

one by applying genetic operators and selection: 
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Ψ  = s o
1i

ωΘ o … o 
i j

ωΘ o 
0

ωΘ  

Ψ (P) = 
s

sΘ (Q∪
1i

ωΘ (…(
i j

ωΘ (
0

ωΘ (P)))…)) 

where {i1,…ij}⊆ {1,…,z}, and Q ∈{∅ ,P}. Bäck defines the high-level algorithmic 

formulation of EA in Algorithm 1. 

 

1 procedure BäckEA 
2 begin 
3 t := 0; 
4 initialize P(0) := { 1a (0),…, aμ (0)} ∈ I μ ; 
5 evaluate P(0) : {Φ ( 1a (0)),…, Φ ( aμ (0))}  
6 while (ι (P(t)) ≠ true) do 
7    recombine: P’(t) := 

r
rΘ (P(t)); 

8    mutate: P’’(t) := 
m

mΘ (P’(t)); 
9    evaluate: P’’(t) : {Φ ( 1''a (t)),…, Φ ( ''a λ (t))}; 
10    select: P(t+1) := 

s
sΘ (P’’(t)∪Q); 

11    t := t + 1; 
12 od 
13 end 

Algorithm 1: Bäck’s standard Evolutionary Algorithm [Bäck96] 

2.5 Multiobjective Evolutionary Algorithms 

As discussed in section 2.2.2, we desire EAs over other stochastic algorithms for 

their ability to solve multiple problems simultaneously. However, EAs are typically 

coded to be constrained to single objective optimization problems. Hence, we consider 

the Multiobjective Evolutionary Algorithm for the following reasons [Lamont06]: 

1. FLEXIBILITY: can find several trade-off solutions in a single algorithm run 

instead of a series of separate runs; 
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2. CONFIDENCE: less susceptible to structural forms of solutions—a concern for 

classical algorithmic techniques; 

3. FEASIBILITY: find solutions to extremely complex/time consuming and high 

dimensional real-world applications that have multi-objective goals; 

4. ROBUSTNESS: use little problem domain knowledge and can generate a good 

distribution of diverse trade-offs; 

5. IMPLICIT PARALLELISM: MOEA structures reflect efficient parallel 

processing. 

The definition and generic algorithmic structure of an MOEA is similar to an EA (which 

is synonymous with EC, per section 2.3) except for minor source code changes to 

accommodate multiple, independent objectives and their constraints (if any). Per Coello 

and Cortés, MOEAs share three main similarities [CC05]: 

1. THEY ALL USE PARETO RANKING: individuals in the population are ranked 

based on Pareto Dominance (i.e., nondominated individuals are scored—or 

ranked—the highest); 

2. THEY ALL USE SOME FORM OF ELITISM: this method of selection allows 

for the retaining of solutions that are globally—not locally—nondominated, with 

respect to all populations, to include the current one; 

3. THEY ALL EMPLOY DIVERSITY; i.e., through a mechanism such as mutation. 

The primary motivation for using EAs in solving MOPs is their unique ability to deal 

simultaneously with a set of possible solutions (comprising a population) which allows us 



 

49 

to find several optimally known members of the solution set in a single run of the 

algorithm, vice separate runs as with traditional algorithms (see Appendix A). 

2.6 Single and Multiobjective Optimization 

As previously discussed, the strength (effectiveness) of Abs is based upon their 

affinity to Ags. From the affinity landscape perspective, our objective, defined as a 

specified level of desired attainment of a value [CVL02], is the maximal affinity of an Ag 

binding site. De Castro and Von Zuben define optimization as “the task of finding the 

absolutely best set of admissible conditions to achieve a certain objective, formulated in 

mathematical terms” [DCVZ99b]. There are three types of optimization within a given 

data set: 

1. discovery of the global maximum; 

2. discovery of the global minimum; 

3. hybrid: minimization of some values and maximization of others, aggregated into 

a single objective. 

Single-Objective Optimization 

Coello, Van Veldhuizen, and Lamont define global optimization as, “the process 

of finding the global minimum4 within some search space S [CVL02]. Hence, given a 

function f : ( ), , * *nS for x thevalue f f xΩ⊆ = → Ω ≠∅ ∈Ω > −∞  is called a 

global minimum if and only if ( ) ( ): *x f x x∀ ∈Ω ≤  where *x  is the global minimum 

                                                 

4 Or maximum, since min{ ( )}f x  = -max{ ( )}f x− . 
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solution(s), f is the objective function, and the set Ω  is the feasible region (Ω ⊂ S). In the 

context of Ab-Ag affinity matching, we seek the globally optimal (maximal) affinity 

between an Ab and all Ag binding sites within its reach. In this case, single objective 

optimization is appropriate. However, reality dictates that an AIS is complex enough to 

involve more than one objective. Hence, single objective optimization becomes 

insufficient as we require multiple-objective optimization. 

The Multiobjective Optimization Problem 

Osyczka defines the Multiobjective Optimization Problem as [Osyczka85]: “a 

vector of decision variables which satisfies constraints and optimizes a vector function 

whose elements represent the objective functions.” These functions form a mathematical 

description of performance criteria which are usually in conflict with each other. Hence, 

the term optimize means, “finding such a solution which would give the values of all 

objective functions acceptable to the decision maker.” In this context, decision variables 

are the numerical quantities for the values chosen for the optimization problem. For 

example, a vector of n decisions x  is represented by x =[x1,x2,…,xn]. Constraints 

mathematically define limitations or restrictions (e.g., resources, physical, time) imposed 

upon the decision-maker in order to produce an acceptable solution. For example, for a 

vector x  of values to be all positive integers, the function imposed upon it would be 

written gi( x ) ≥  0 for i = 1,…,n. The objective of MOPs is to find good compromises (or 

“trade-offs”) rather than a single solution, as in global optimization [CVL02]. As more 

independent objectives are added to a problem, the more complex interpreting the results 
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becomes. Therefore, we turn to a visualization of the solutions, as conceived in 1896 by 

Italian economist Vilfredo Pareto. 

2.7 Pareto Optimality and Nondominance 

By definition, MOPs produce multiple solutions which may not be optimal for all 

objectives [CVL02]. By adjusting one solution for greater optimality, we risk decreasing 

the desired value of one or more other solutions. Thus, we desire a set or subset(s) of 

nondominated solutions through Pareto Optimality. A point *x ∈Ω  is Pareto Optimal 

(with respect to the entire decision space) if there exists no feasible vector x  which 

would decrease some criterion without causing a simultaneous increase in at least one 

other criterion [CVL02]. Mathematically, for every *x ∈Ω  and I = {1,2,…,k}, either 

( ( ) ( *))i I i if x f x∈∀ = or there is at least one i∈I such that ( ) ( *)i if x f x> . 

Pareto dominance helps to define one vector whose every value is more optimal 

than another vector. For example, vector a = (a1,…,ak) is said to dominate vector b = 

(b1,…,bk), denoted as a ≺ b , if and only if a is partially less than b, i.e., ∀ i∈{1,…,k}, ai 

≤  bi ∧  ∃ i∈{1,…,k} : ai < bi. In a given MOP, ( )f x , the Pareto Optimal Set (P*) is 

defined as a set or subset of nondominated points (i.e., no point dominates another). This 

is mathematically written as P* {x∈Ω  | ¬ ∃ x’∈Ω  ( ')f x ≺ ( )f x }.           

All feasible solution points are plotted within decision space, called genotype, and 

the set of nondominated solutions that rest on the solid boundary region are inside 
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objective space called phenotype, as depicted in the example of a bi-objective 

minimization problem in Figure 14, is called the Pareto Front (PF*) [CVL02].  
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Figure 14: Pareto front (denoted by bold line) of a bi-objective minimization problem 
 

In Figure 14, each solution point has a integer representing the total number of other 

solution points that dominate it. By definition, all phenotype-space points always have a 

value of zero because they are nondominated. All genotype-space points have a value of 

at least one. A solution point dominates another when it has a value more optimal than 

another for all objectives. For example, c6 is dominated by four points: c1, c2, c3 and c5. 

On the other hand, while c7 has a lower second-objective (f2) score than c6, its first-

objective (f1) score is higher; hence, it does not dominate c6. Mathematically written, 

PF* { a = f =(f1(x),…,fk(x)) | x∈P*}.  
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Every PF* has a true Pareto Front (PFtrue) and known Pareto Front (PFknown). A 

PFtrue is the optimal P* in that no further trade-offs may make the solution set any more 

desirable (i.e., any increased value of one solution decreases one or more solutions by a 

greater value). PFknown is the resulting PF* upon algorithm termination—it either matches 

PFtrue or is short of it, depending on execution time. Finding PFtrue is analogous to 

executing a stochastic algorithm against an NP-Complete problem—the global solution 

(set) may require infinite time to be discovered. Therefore, PFtrue is typically defined by 

the subjective decision of when to terminate an EA, based on factors such as: setting a 

fixed number of generations, achieving the pre-determined optimal solution, or lack of 

further convergence after a number of generations. PFtrue is typically used as an 

effectiveness benchmark against other algorithms’ resulting PFknown. 

2.8 Summary 

In summary, this chapter discusses background information relevant to the 

consideration and construction of an AIS-predicated MOEA with application to the ID 

and anomaly problem domain. When developing such an MOEA, careful thought must 

go into the selected problem domain because this drives the choice of search algorithm. 

Further, the type of optimization must be considered—whether single or multiobjective. 

To most accurately model a human AIS, a simultaneous problem-solving algorithm 

should be considered, in a multiobjective context. These ideas form the basis of the high-

level design of such an MOEA, in the next chapter.  
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III.  High-Level Design and Specification 

 

In this chapter, the methodology and meta-level hardware and software 

architecture design of our AIS-inspired MOEA is presented. To provide perspective, 

Sections 3.1 and 3.2 discuss the formal classification of our algorithm and the associated 

space and fitness landscape complexity. Section 3.3 reviews how an MOEA is integrated 

into the generic AIS model. Section 3.4 formally introduces our algorithm’s application 

domain in order to understand the rationale of our design model. Sections 3.5 provides 

the impetus behind our algorithm’s development. Finally, Section 3.6 explains the 

algorithm’s abstract design and specification. 

3.1 Formal Problem Classification 

The most common method of identifying computer network intrusions is the 

matching of incoming network protocol packet headers to “known bad” packet header 

signature strings [HWGL02], or signature-based detection. This method of string 

evaluation is analogous to the classic NP-Complete Boolean Satisfiability Problem (SAT) 

[Michalewicz04]. The SAT is the enumeration (or exhaustion) of a search space of n 

variables against a function to determine which variables return true from that function. 

Because the number of true value combinations can range from zero to one-to-many, the 

problem degenerates into a worst-case enumeration across the entire search space, 

leading its classification as a combinatoric NP-Hard problem. By definition of NP-Hard, 

our problem cannot be solved in polynomial time [DPST06]. Hence, deterministic search 

methods can take, in worst case, infinite time. Hence, one is forced to consider a 
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stochastic approximation solution. The amount of data in a packet used to define a 

signature varies among IDSs, ranging from 49 bits in Hofmeyr’s AIS to over 320 bits in 

Williams’ algorithm [Hofmeyr00, Williams01]. 

This research continues the work of two algorithms formally introduced in 

Section 3.5: REALGO, which defined a bit string chromosome signature data structure of 

30 bits, and MISA, which defined a bit string chromosome of 820 bits. The size of a 

universe of bit string combinations is dependent upon alphabet cardinality raised to the 

power of its length. Here, the signature value is either “0” or “1,” resulting in an alphabet 

of size two. This value is raised to the power of the length of the bit string. At a size of 30 

bits, there are 230 or approximately 1.07 billion bit string combinations that would need to 

be generated by a deterministic algorithm in order to completely cover the search space. 

Exponentially worse, a 820-bit string has 2820 or approximately 6.99 x 10246 bit string 

combinations which must be evaluated. 

To determine the time required to evaluate all possible bit string combinations, a 

simple fragment of Java code was developed to calculate the time required to generate 

one bit string (chromosome), given a length. Executed on a Windows XP Professional-

based operating system (OS) with 1.69 GHz Intel Xeon™ processor and one gigabyte 

(GB) of random access memory (RAM), the Java Runtime Environment (JRE) version 

1.5 required a (340-trial) average of 11.2 microseconds to generate one 30-bit string and 

287 microseconds for one 820-bit string. Therefore, one 30-bit string would take 

approximately 96 seconds to deterministically evaluate while a 820-bit string would take 

approximately 7.68 x 10245 years. While the latter is clearly unacceptable, the former is 



 

56 

just as unacceptable when one considers the rate at which packets enter the network, 

which, ideally, should be individually evaluated against all combinations. To compound 

this problem, only a fragment of all incoming packets represent non-self packets, while 

evaluation on the majority remainder of self packets is wasted work.  

3.2 Space Complexity and Search Landscape 

In the Hamming shape-space, the set of all possible Ags is considered as a finite 

space of points. Ags similar in composition occupy neighborhoods of that space because 

malicious network activity is typically executed as a sequence of non-self packets sent 

from attacker to victim machine. As exemplified in the last Section, the total number of 

unique Abs and Ags is given by kL, where k is the size of the alphabet and L is the bit 

string length. As depicted in Section 2.3.1, Figure 12, a single Ab can recognize a 

neighborhood of Ags, based on its affinity threshold integer parameter ε . For example, if 

ε  = 0 (i.e., a perfect match is required), then that Ab can recognize only an exact 

complement Ag. The number of Ags covered by one Ab within a neighborhood (region 

of stimulation ε ) is given by: 

      ( )
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where C is Ab coverage [DCVZ99]. Based on Equation 4, an alphabet of size k and a bit 

string of length L, the minimum number of Ab molecules (N) needed to fully cover the 

shape-space is: 
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where the value is rounded to the next higher integer. Table 2 gives a perspective on the 

number of Abs required for full Hamming shape-space coverage, based on varying bit 

string length L, affinity thresholdε , and alphabet k = 2 (symbols “0” and “1”). 

 

 
Table 2: Coverage of shape-space (C) with required Ab repertoire (N) for differing bit 

string lengths (L) and affinity thresholds (ε ) with alphabet size k = 2 
 

AISs have traditionally focused on the single objective problem because of the 

argument that the only objective is to effective classify non-self. Single-objective 

problems are in the form of either one objective or condensing multiple objectives into a 

single objective, at the cost of effectiveness, in order to find the global optimum. 

However, reality dictates problems are complex and multidimensional. For example, 

another independent objective not considered here, to make this a tri-objective 

optimization problem, is efficiency. 

Search landscape dimensionality is driven by data structure composition and the 

number of objectives. The greater the length (number of dimensions) of the bit string, the 

more potentially chaotic the search space. Figure 15 depicts a two-dimensional example 

of a search landscape composed of self and non-self events [Williams01]. Here, the 
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landscape is mostly smooth with small clusters of self events and fewer, isolated non-self 

events. This is because IDSs have the resources to protect only a limited range of 

machines and their services. As tighter security policies reduce services or machine 

coverage, the landscape becomes yet smoother. This observation stems from our data set 

analysis in Section 5.3. 

LEGEND

self events

non-self events

arbitrary-shaped
Ab detector

 

Figure 15: Two-dimensional search landscape example [adapted from Williams01] 
 

Compounding the complexity of this search landscape is the constraint that our 

Ab detectors must react only to non-self events. The location, shape and value of ε  

equate the fitness values of a detector. The larger the value of ε , the greater the Ab’s 

neighborhood of detection. However, the tradeoff lies in the greater coverage of self 

events. Hence, an alternative to discarding self-matching Abs is to reshape them so they 

do not cover self. Empirical shaping of Abs (e.g., hypersphere, hyperrectangle, hybrid, 
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etc.) is no meager task, as much research been dedicated to it; e.g., [Shapiro05]. Figure 

15 shows three possible areas of Ab detector coverage: within self events, within non-self 

events and in uncovered areas. No coverage is desired in the first area because the 

detector can declare the self as non-self (false positive). Further, coverage in the third area 

is wasteful because no meaningful network traffic resides here. An example would be a 

detector data structure searching for IP fields or services which security policies have 

disabled. Hence, all detectors should be shaped to cover areas not inhabited by self and 

non-functional services. Negative selection, as discussed in Section 2.2.1, helps to 

initially shape Ab detectors for ideal coverage by either removing detectors that match 

self, bases on an affinity measure as such Hamming distance, or training self-matching 

detectors via mutation until they don’t match self, as shown in Figure 16. Our algorithm’s 

method of negative selection—removal without replacement—is discussed in Section 

3.6.2. 

 

Figure 16: Negative selection process [HF00] 
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3.3 Integrating an MOEA with the Generic AIS Model 

As introduced in Section 2.4.2, EAs are defined by their use of evolutionary 

“survival of the fittest” principles—such as recombination, mutation and selection 

operators—and a population-based meta-heuristic optimization algorithm to perform 

exploration and exploitation. Therefore, we consider Bäck’s standard EA construct (see 

Algorithm 1, Section 2.4.2), expanding the evaluation operator to facilitate two fitness 

values—one for each objective—to extend this model to an MOEA. Our MOEA’s 

operators are enhanced by using the ideas of two prior AIS-related algorithms, described 

in Section 3.5. 

As discussed in Section 2.3, only an abstract AIS framework exists, solidified by 

the problem domain, to guide our AIS construction. AISs are one type of GA, fashioning 

an EA though efficient abstractions of the human BIS. In defining our AIS framework: 

1. our application domain is the ID data set; 

2. our representation is a bit string array because of its use by both existing 

algorithms we build upon; 

3. our affinity measure is defined by Hamming Distance because it’s the most 

commonly used method of bit string distance measurement [HWGL02]. We did 

not choose the r-contiguous bit rule because we are pattern-matching the entire 

context of the packet vs. particular fields; 

4. our immune algorithm is based on the aforementioned MOEA. 

With this algorithm construct and the accompanying ID data set, we possess the required 

information to develop and test an ID domain solution. 
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3.4 AIS Application Domain 

As discussed in Section 2.3, the application domain is the first step in defining the 

architecture of an AIS algorithm; hence, we now tersely discuss the ID data sets that are 

input into jREMISA. Because we are analyzing the ID domain on the scale of distributed 

computers, a data set is required that mimics clean and attack network traffic among 

many computers. Our chosen data sets are large, binary network traffic files composed of 

Internet Protocol (IP)-based traffic, with the majority of IP records being Transmission 

Control Protocol (TCP), User Datagram Protocol (UDP) and Internet Control Message 

Protocol (ICMP) communication packets. Each protocol, which most commonly facilities 

non-self traffic [HWGL02], contains packet context headers and content payloads which, 

when encoded and compared to the Abs, should determine which or not they are non-self. 

In this research, we focus on packet headers only. 

3.5 jREMISA: A Continued Work 

Two AIS-inspired algorithms were found that claimed a level of experimental 

success over other algorithms with a similar objective: Edge’s Retrovirus Algorithm and 

Coello and Cortés’ Multiobjective Immune System Algorithm [ELR06, CC05]. Both 

algorithms were observed to possess exclusive strengths, which, when combined, we 

conjecture could result in an AIS-inspired MOEA that generates highly effective Abs for 
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application to an ID data set. For the sake of simplicity and identification, our algorithm 

is called the Retrovirus-inspired Multiobjective Immune System Algorithm (jREMISA)5. 

3.5.1 REALGO History 

The Retrovirus Algorithm (REALGO), a single-objective AIS, was conceived by 

Edge, Lamont, and Raines, in 2006 [ELR06]. Its intent was to escape local minima when 

performing complex searches by providing a single memory for each Ab of the last 

location visited. This practice of preventing premature convergence into local minima 

was modeled after the BIS’ use of reverse transcription ribonucleic acid (RNA). For each 

generation, the RNA operator copies the Ab into memory. If the next generation results in 

a lower fitness for that Ab, its RNA copy is restored from the RNA-produced memory in 

order to continue search in a different direction. Finding the global minimum in this 

manner is intended to better discover the optimally fit Abs. Therefore, this RNA concept 

is applied to our fitness function. REALGO’s algorithm flowchart, citing the RNA 

procedure jREMISA utilizes, is shown in Figure 17. 

                                                 

5 Because jREMISA is built upon REALGO and MISA, we recommend the reader review Edge’s 
REALGO paper and Coello’s MISA paper [ELR06, CC05]. 
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RNA Operation

 

Figure 17: REALGO algorithm flowchart [adapted from ELR06] 
 

3.5.2 MISA History 

Multiobjective Immune System Algorithm (MISA), a multiobjective AIS based 

on the Clonal Selection Principle, was conceived by Coello and Cortés. They claim this 

algorithm to be “the first attempt to use an artificial immune system to solve the general 

multiobjective optimization problem” [CC05]. Their approach uses Pareto dominance 

and feasibility to determine which Ab solutions deserve to be cloned. Nondominated Abs 

(solutions) are maintained in a secondary (or external) population, constituting the elitist 

selection mechanism, which maintains the set of best Abs (solutions) thus far and moves 
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this PFknown population toward PFtrue over time. MISA’s order of execution is summarized 

in Algorithm 2. 

 

1 procedure MISA 
2 begin 
3 randomly generate initial Population (Pi) 
4 initialize empty secondary Population (Ps) 
5 repeat 
6      determine Pareto optimality for all Ab∈Pi 
7      copy Pareto-nondominated Abs∈Pi into Ps /* elitism */ 
8      determine uniform number of clones for each Abs∈Ps to expand  

     Ps by 600% 
9      perform cloning of Abs∈Ps based on Step 8 
10      apply uniform mutation to each cloned Abs∈Ps 
11      replace lost Abs∈Pi by copying back best Abs∈Ps 
12 until (predetermined number of evaluations) 
13 end 

Algorithm 2: Multiobjective Immune System Algorithm (MISA) 

 

However, MISA differs from other MOEAs in that it does not use recombination 

due to the sufficiency of mutation to move its Abs around the search space. Because of 

MISA’s experimental results, our algorithm utilizes their clonal selection principle 

methodology by implementing a secondary population and mutation and selection 

operators according to their specification. 

3.6 jREMISA Design 

This section provides a high-level, abstract overview of the methodology and 

many factors that are integrated into jREMISA. Single objective EAs consist of a 

population of Abs where each has a singular fitness value. This fitness value allows Abs 

to be ranked amongst each other at each generation, enabling a selection mechanism to 



 

65 

decide which Abs survive to the next generation (ι +1). Being multiobjective, each of our 

solutions (Abs) contains a set of two values: 

1. an integer measure of how effectively they classify between self and non-self; 

2. an integer measure of their affinity threshold (hypervolume) deviation from the 

starting affinity threshold defined at negative selection. 

We desire a global minimum because: 

1. a higher fitness value means more penalties have been assessed for incorrect 

classifications; 

2. we desire Ab hypervolume to deviate as little as possible from the experimentally 

derived ideal affinity threshold of 39% (see Section 5.3). 

Consequently, multiobjective algorithms don’t return a globally optimal solution but 

rather a set of solutions, allowing analysis of the Pareto Optimal solution set’s tradeoffs 

through a Pareto Front. 

3.6.1 Data Representation 

Per Section 2.2, the two key actors are the Abs and Ags. Abs are the BIS detectors 

equally distributed throughout the body, searching for non-self Ags. Ags come in two 

forms: self Ags (normal traffic events) and non-self Ags (abnormal traffic events). A 

single Ab or Ag is referred to as a chromosome where each dimension is referred to as an 

allele. It is the duty of the Ab to interact with Ags to classify them as either self or non-

self. Hence, Abs are system defenders while incoming information from the outside is 

considered pathogenic, coming into contact with Abs to determine if the percentage of 
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complementarily over chromosome length meets the affinity threshold for the Ab to 

declare the Ag as non-self. 

As introduced in Section 2.3.1, the data structure that compose Abs and Ags can 

be formed of differing data types (e.g., integer, binary, real-valued numbers, etc.), 

alphabets and lengths, which determine the dimensionality of the search landscape. AIS 

algorithm designers typically employ fixed-length binary string representation due to its 

ease of manipulation by EAs, low computational cost, minimal size, and, most 

importantly, it most closely models the BIS for its simple “yes-no” complementary 

matching outcome of Ab-Ag epitope encounters (i.e., affinity-matching Hamming value). 

Further, this was (conveniently) the data structure employed by both our prior algorithms. 

Therefore, we encode our generated Abs and incoming data set Ags as bit strings. Bit 

string length is determined by the type of each incoming packet, further discussed in 

Section 4.3. Because we chose the signed integer data type for our data structure, we have 

the freedom of assigning values to Ab alleles other than zero and one. Using Java, our 

allele values can range between –(231) and 231-1. Hence, seven additional attributes are 

appended to the end of each Ab: name, number of false detections, (true positive + true 

negative) fitness score, (false positive + false negative) fitness score, affinity threshold 

deviation, whether or not the Ab has been broadcasted to the subnet and Pareto 

dominance value. 

3.6.2 Population Initialization and Negative Selection 

The single population of Ab detectors is typically initialized through a 

pseudorandom-generated binary value for each allele of the Ab array. This was the 
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method employed by both REALGO and MISA. Our method generates values the same 

way but differs in population pool size and Ab length. To date, all AIS literature has 

suggested initiating a single randomly-generated pool, in which all trained Abs are 

evaluated against each incoming Ag. However, since we have the ability to determine our 

incoming data packet’s protocol (i.e., TCP, UDP or ICMP) before it is evaluated, only 

Abs of the same protocol are evaluated against the Ag. Hence, we initialize three separate 

fixed-length populations whose length always matches that of the incoming Ag. We 

conjecture this increases fitness function accuracy by evaluating Abs and Ags of 

matching protocol and increases efficiency by limiting negative selection evaluation to 

one subset of the three Ab populations. 

Negative selection is performed with a user-defined affinity threshold and 

Hamming distance measure. If the total complimentary bits divided by the length of the 

bit string meets or exceeds the threshold, it is discarded without replacement. This is 

preferred over mutation training to guarantee the surviving population doesn’t recognize 

a single self event in the clean data set. This function does not employ the data set truth 

set. 

3.6.3 Evaluation (Fitness) Functions 

As introduced in Section 2.2.1, pattern recognition based on the complementarity 

of binding regions between an Ab and Ag is the heart of our fitness function. This 

algorithm has three different evaluation functions: negative selection, fitness function and 

the Pareto optimality test. With our random populations established, the data set stream is 

opened, reading in one packet at time, in a “sliding window” fashion, as depicted in 
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Figure 18. Each tcpdump packet received is encoded into an Ag and its affinity from each 

Ab measured using Hamming distance (from Section 2.3.1, Equation 3): 
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Negative Selection 

The first evaluation function—step three of Bäck’s EA—occurs only once and 

represents the negative selection phase—the removal of all random Abs that match self. 

Here, the data set is sanitized, containing only self events, for the purpose of training the 

random Abs not to react to self. As an Ab and Ag are compared, the distance value is 

divided by the Ab length to determine if the value meets or exceeds the user-defined 

affinity threshold. If so, the Ab has reacted to (and would summarily attack) self; hence, it 

is discarded. At the completion of negative selection, remaining Abs are feasible 

solutions that meet our constraint of not matching self and are titled, “trained but 

immature:” trained to discern self from non-self but immature in lack of contact with  

non-self. These trained populations are now ready to interact with an ID data set 

containing labeled attacks. 

Fitness Function 

The second evaluation function, which occurs within each generational loop, is 

the fitness function responsible for calculating fitness values of each Ab against a data set 

with labeled attacks. Per Section 2.6, optimization involves finding the global maximum 

or minimum value within a landscape. We desire the global minimum for our 

independent objectives. The first objective measures the sum value of correctly classified 
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self and non-self, in which we desire a minimal value. The second objective measures Ab 

hypervolume deviation, in which we desire a minimal value, as well. As this is a proof-

of-concept algorithm, a truth set of extracted attack packet numbers guides the fitness 

function to determine whether the Ab was correct in its classification (see Appendix B). 

Every Ab suffers both a 50% chance of Cauchy mutation and a penalty value in its fitness 

(first) objective axis at every generation based on how inaccurate their Ag classification 

was. Hence, the fittest Abs have the lowest objective fitness scores. Each correct Ab 

declaration rewards it with a 1% increase in affinity threshold (hypervolume) and a copy 

of its chromosome within its RNA space. Conversely, a false detection shrinks that Ab by 

the same affinity rewarded, assesses a “false detection” point, and its chromosome is 

reverted to its stored RNA, returning it to its last search space position. If the number of 

false detections equals the user-defined Ab lifespan, the Ab is removed from the 

population. 

Pareto Optimality Test 

The third evaluation function measures the Pareto optimality of each Ab. As 

introduced in Section 2.7, nondominated points are those desired solutions that lie within 

phenotype or objective space. Every Ab is compared to every other Ab with regard to 

dominance cardinality. Upon completion of scoring, Quicksort sorts the array in 

dominance-ascending order to minimize the search time for the selection operator when 

copying qualifying fittest Abs from the primary to the secondary population. 
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Figure 18: Example of transient Ags evaluated against its IP protocol-matching Ab 
 

3.6.4 Recombination, Somatic Hypermutation and Affinity Maturation 

REALGO and MISA did not utilize recombination (crossover) due to the 

sufficiency of mutation to move Abs around the search space and assimilate encountered 

non-self data structures. Therefore, jREMISA does not employ crossover. Two types of 

mutation are employed at two different areas of jREMISA: 

1. CAUCHY MUTATION. Cauchy (distribution) mutation, used in REALGO, is the 

division of a Gaussian distribution-generated random number by itself. This 

mutation has been shown to have the ability to make long jumps to escape local 

minima as compared to a Gaussian distribution [Yao97]. Hence, we use this 

mutation method on false-detecting Abs in the fitness function. While REALGO 

sets a 50% chance for each allele (bit) in the array to be mutated, we heuristically 
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choose which alleles receive Cauchy mutation, based on whether it was a false 

positive or negative, described further at the end of Section 4.4.2. 

2. UNIFORM MUTATION. This method, recommended by MISA, is employed in 

our selection operator upon all cloned Abs within the secondary population. The 

nondominated clones are mutated in N random positions, where N is the number 

of objective variables. Dominated solutions are randomly mutated in (N plus the 

number of Abs dominated by) positions. 

Affinity maturation is the process of enlarging the Ab volume with the intent of 

covering as much non-self space as possible, without impinging on self space. Our Ab 

affinity deviation value is adjusted based on the truth of the Ab declaration, within the 

fitness function. For every correct classification, the Ab matures (increases its affinity 

threshold, or hypervolume) by 1%; otherwise, it decreases by 1%. 

3.6.5 Selection Operator 

Following MISA design, our selection operator involves a secondary or external 

population that manages nondominated solutions. It employs elitism, copying the top 5% 

of nondominated solutions from the primary into the second population. If there are not 

enough nondominated solutions to compose 5%, then the least nondominated solutions 

fill that gap. Next, the clonal selection principle (see Section 2.2.2) selects the Abs most 

effective at Ag detection for cloning and subsequent mutation. Coello and Cortés 

performed a series of sub-experiments to determine the most effective cloning rate for 

each fittest Ab, concluding the Abs should be uniformly cloned until the secondary 

population increases to 600% its size [CC05]. This cloning operation is followed by 
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somatic hypermutation (mutation) using a MISA-suggested uniform distribution. 

Nondominated solutions are mutated in N random positions, where N is the number of 

objectives. Dominated solutions are mutated in (N plus the number of Abs dominated by) 

positions. The fittest secondary Abs are then copied back into the primary until the 

primary population returns to original size (if any primary population Abs were removed 

due to their meeting the false detection threshold), defining our evolution as a mix of both 

parents and children (μ λ+ ). Finally, all dominated solutions within the secondary 

population are removed, restoring it to a nondominated pool. The secondary population 

cannot exceed the size of the primary population. This process is depicted in Figure 19. 
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Figure 19: Elitist selection operator process 
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3.6.6 Detector and Generational Lifecycle 

Ab detectors do not live indefinitely unless they maintain nondominance. Those 

detectors that meet the threshold for number of false detections are declared ineffective 

and are discarded so more effective detectors may inhabit the search landscape. The 

number of generations of an EA depends on the application domain. Algorithm 

termination is typically based on: 

1. a fixed number of generations t; 

2. a measure of convergence over a set number of generations t; 

3. a lack of a significant increase in fitness over t generations; 

4. the desire to allow indefinite execution ( t← ∞ ), as in a live environment. 

jREMISA considers the passing of each data set’s Ag (packet) to be one generation vs. 

the size of the data set. Hence, our number of generations is the number of packets 

(events) of the entire data set. 

3.6.7 Calculating the Pareto Front 

MISA defines its true Pareto Front as the secondary population, at algorithm 

termination [CC05]. The individuals within are all nondominated not only with respect to 

each other but also with respect to all previous Abs attempting to enter this population. 

Per our concept of three initial populations, jREMISA, in turn, has three secondary 

population Pareto Fronts: one for TCP, one for UDP and one for ICMP. Any dominated 

points within the secondary population at algorithm termination are indicative of not 

enough nondominated points in that population. The values of these sets can then be 

mapped into a two-dimensional Pareto Front.  
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3.6.8 Distributed AIS Communication 

The BIS is, among other traits, a parallel and distributed system. Abs and other 

BIS cells roam throughout the system, operating autonomously, yet communicating to 

each other (e.g., an Ab communicates to nearby Abs when it has been stimulated by an 

Ag). The Air Force Institute of Technology (AFIT) developed the Computer Defense 

Immune System (CDIS) in an effort to combat the computer virus problem in a proactive 

manner [HWGL02, Marmelstein99]. CDIS is a multi-agent, hierarchical, distributed 

computational immune system modeled after BIS archetypes.  In the distributed context, 

CDIS addressed the need to disburse Ags and their workloads among the nodes in 

networks. Lippmann, in his recommendations to improve existing IDS, recommends 

approaches to detecting new attacks—specifically anomaly detection—should be 

extended to multiple hosts [Lippmann00]. 

Our algorithm furthers these ideas through facilitating two different types of 

messages to other jREMISAs running on the same subnet: newly discovered 

nondominated Abs and user-typed instant messaging. A single AIS can monitor only a 

single host or segment of network traffic, covering only a small portion of the search 

landscape. Employing multiple AISs throughout the network increases coverage of the 

search landscape and enables communication of their fittest (nondominated) Abs among 

each other. Hence, after negative selection, jREMISA has the ability to listen for and 

broadcast all nondominated Abs at the end of each generation, as depicted in Figure 20. 

System console output confirms the sending and receiving of broadcast Abs. In addition, 
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users have the ability to broadcast one-line messages to each other, in the event they are 

utilizing jREMISA in geographically distributed working areas. 

 

Body / network
search space

Nondominated Abs

Antigen (Ag)

Antibodies (Abs)

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

 

Figure 20: Mapping of BIS distributed components to a distributed AIS 
 

The potential exists to saturate network bandwidth with entire secondary populations 

being broadcast after every generation. However, each Ab is allowed to be broadcast only 

once, in its lifetime. Therefore, the user must decide the percentage of the secondary 

population to broadcast at the end of each generation. 

3.7 Summary 

This Chapter describes the high-level design and specification of our algorithm 

jREMISA. The methodology addresses the application domain’s formal classification and 

landscape complexity. The foundational EA is multiobjective and fitted with abstract AIS 

components to make it an AIS-inspired MOEA. The overall algorithm is constructed in 

order to apply the empirically-derived strengths of REALGO and MISA to our operators 

of evaluation, selection and mutation. We conclude with how we intend to derive our 
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approximately optimized solution set through measurable means. Chapter 4 develops our 

high level design in a more technical depth. 
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IV. Low Level Design and Implementation 

 

Our jREMISA coding and implementation is a phased project. The end result is 

one autonomously-operating algorithm that optionally communicates cooperatively with 

all other computers running jREMISA, within one network segment. This chapter 

presents the implementation of the high-level Java design and specification details from 

Chapter 3. Section 4.1 begins with the hardware and software required to perform this 

software development. Section 4.2 explains the source code migration from C to a 

prepared software design architecture in Java. Section 4.3 details the signature design, 

generation of Ab chromosome arrays and the array encoding of the incoming data set 

Ags. Section 4.4 provides pseudocode for all the major functions and evolutionary 

operators of jREMISA. Section 4.5 explains the distributed communication protocol and 

transmission methodology of Abs to the subnet of listening jREMISAs. Section 4.6 

explains how post-execution data is properly ordered into a saved XML file for graphical 

analysis and potential future re-use. 

The first phase of software implementation involves acquisition and conversion of 

the existing C programs, REALGO and MISA, into their Java equivalent, jREALGO and 

jMISA. The second phase involves the integration of the two unrelated Java programs 

into a single Java program called jREMISA. Once validated for identical output, 

described in Section 5.2, jREALGO and jMISA’s exclusive strengths are merged into a 

single Java program. The third phase involves tailoring the program to fit the data 

structure of the real-world data set. Once jREMISA can successfully process external 
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data files, the fourth and final phase incorporates the distributed component, which 

facilitates AIS broadcasting of its nondominated Abs among the other AIS’ within the 

LAN.  

4.1 Hardware and Software Requirements 

C language analysis and runtime debugging of REALGO and MISA is performed 

in the Microsoft Visual Studio 2005 Integrated Development Environment (IDE) while 

Java programming and runtime debugging of jREALGO, jMISA and jREMISA was 

performed in the Eclipse6 open-source IDE (see Appendix D.3 for source code 

explanation and hierarchy). To minimize Java execution overhead, compiled Java 

projects are exported to a self-contained Java Archive File (JAR), executed independently 

of Eclipse, requiring only the Java Virtual Machine (JVM) to be running. Therefore, this 

program may be executed on any hardware platform running the JVM. 

4.2 REALGO and MISA C-To-Java Language Translation 

Because of the growing popularity [Java04], global ubiquity and customer (i.e., 

DoD) utilization of Java, both REALGO and MISA were converted in Java equivalents 

jREALGO and jREMISA, respectively, facilitating OS extensibility and flexibility into 

existing and future customer Java systems. Both REALGO and MISA C language source 

files were acquired directly from their respective authors and their Java-based derivative 

are coded to be executed against the same test functions as their C parent.  

                                                 

6 The Eclipse Project, http://www.eclipse.org. 
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Translating REALGO to the Java-based program jREALGO was straightforward 

because REALGO’s signature data structure is a simple bit string array, as Java favors 

objects over pointers. Translating MISA to the Java-based program jMISA was more 

difficult due to MISA’s chromosome’s data struct(ure) simply including a pointer to the 

next chromosome. Hence, C’s singly-linked bit string chromosomes became an awkward 

object-linked Java implementation. In addition, for testing purposes, we “retro-coded” 

both C programs with a nanosecond-precision timer, made possible with Microsoft 

Windows’ Application Programming Interface (API) system calls (see Appendix D.4).  

During the translation process, software engineering principles and design patterns were 

incorporated, including one of the earliest, the Model-View-Controller, in order to 

minimize the learning curve for understanding our software development methodology. 

4.2.1 The Model-View-Controller Paradigm 

Both REALGO and MISA programs are packaged as the typical “single .C source 

file with included .H header files.” All parameter values are “hard-wired” into the code, 

mixing business logic, the functions that operate on the program’s values, with program 

state, the current value of all parameters defined in the program. From a software 

engineering standpoint, this maximizes the difficulty level, learning curve and time 

required of program modification and minimizes software flexibility. Employing the 

Model-View-Controller (MVC) paradigm during the code conversion—one of the earliest 

known software engineering patterns—helps mitigate this problem (Figure 21). 
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Figure 21: Model-View-Controller architecture [Halloran05] 
 

Per Freeman and Freeman, the model “holds all the data, state, and application 

logic. The model is oblivious to the view and controller, although it provides an interface 

to manipulate and retrieve its state and it can send notification of state changes to 

observers” (which the view identifies itself as). The view “gives you a presentation of the 

model. The view usually gets the state and data it needs to display directly from the 

model.” And the controller “takes user input and figures out what it means to the model” 

[FF04]. In Figure 21, the arrows represent associated between these Classes: the view 

(i.e., “textui”) is aware of the controller (and model, if required) and the controller is 

aware of the model (and persistence), but not vice-versa. In this way, the classes can be 

interchanged with little to modification of the other classes. For example, jREMISA can 

be fitted with any GUI without changing the controller or model. 
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Following this paradigm, C source and header file code are separated into four 

distinct Java project packages: 

1. view: the graphical user interface (GUI), allowing dynamic parameter selection; 

2. model: the Java objects that hold state information about the algorithm; 

3. controller: the mediator that accepts user input (from the GUI) and manipulates 

state information in the model; 

4. persistence: objects responsible for file input-output, such as reading in a data set 

file and saving a surviving population into an eXtensible Markup Language 

(XML) file. 

By incorporating the MVC architecture, we have separated the concerns of all files within 

the Java project. This results in a minimal learning curve and a minimal cost from 

modification or replacement of any Java class within the project packages. 

4.3 Data Signature Design 

Per Section 3.6.1, jREMISA employs the bit string data structure, chosen by both 

REALGO and MISA. Both Abs and Ags are composed of fixed-length integer array 

chromosomes where allele (dimensional) values that define the point’s location in the 

search space are binary and Ab parameter information is of integer value. Ab length is 

dictated by the Ag length and both signatures are generated in different ways. We begin 

this discussion with Ag encoding, as this drives Ab generation.  
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4.3.1 Antigen Data Set Encoding 

The Abs for network intrusion are generated and trained in the same manner as in 

anti-virus detectors [HWGL02]. However, network intrusion Ags are longer and 

segregated because they utilize the IP packet structure for its template. For this reason, 

we constrain our ID domain to encode Ags from network packets wrapped in the three 

most common IP protocols: TCP, UDP and ICMP. The encoding process is made 

possible by a Java class called DumpPro, courtesy of SSFNet7. This class simply reads in 

each byte of a binary network traffic file, such as one generated by tcpdump8, and outputs 

the decimal values of the various IP fields. This class is modified to pre-determine 

whether the packet was TCP, UDP or ICMP, convert all header fields’ decimal values to 

binary and contiguously concatenate those bit strings into the chromosome that represents 

the packet header. jREMISA has the flexibility to construct these chromosomes based on 

user-selected IP, TCP, UDP and ICMP header fields, allowing dynamic re-shaping of the 

search landscape. Because different authors subjectively choose their chromosome’s bit 

length, as Section 3.1 explained, we must first consider the components of the IP packet, 

as this determines the length. The user begins jREMISA by selecting the IP, TCP, UDP 

and ICMP header fields they wish to be evaluated in the search landscape, as shown in 

Figure 22 for the Massachusetts Institute of Technology (MIT)-Defense Advanced 

Research Projects Agency (DARPA) 1999 Intrusion Detection data set [MITDARPA99] 

                                                 

7 Scalable Simulation Framework (SSFNet): a clearinghouse for information about the latest tools for 
scalable high-performance network modeling, simulation, and analysis, http://ssfnet.org. 
8 tcpdump: network traffic packet analyzer, http://www.tcpdump.org. 
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and Figure 23 for the University of California-Irvine 1999 Knowledge Discovery in 

Databases (KDD) Cup data set [KDD99]. By default, all fields are chosen. 

 

 

Figure 22: jREMISA’s MIT-DARPA chromosome construction menu 
 

 

Figure 23: jREMISA’s KDD Cup 99 chromosome construction menu 
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While we ideally wish to evaluate all fields, there is a productivity tradeoff 

between the number of fields chosen and resulting chromosome length. For example, 

selecting more fields may increase classification effectiveness but certainly increases the 

search space universe and decrease efficiency. Conversely, fewer fields chosen may 

reduce the number of non-self detected but also the size of the universe, increasing 

efficiency. 

IP Packet Background 

The IP packet, shown in Figure 24, has a standardized format where the header is 

composed of five (rows of) 32-bit words, accounting for 20 bytes [Stevens94]. In the first 

word (or row), subtracting total length from header length results in knowing the payload 

start byte position (with, obviously, the total length, itself, denoting the end byte). In the 

second word, the identification field uniquely identifies each IP datagram sent by a host, 

which increments by one each time a datagram is sent. In the third word, time-to-live sets 

an upper limit on the number of routers a packet can pass through before being dropped; 

hence, a lifespan. The protocol byte is critical in determining which population to route 

this encoded packet to, as it denotes which protocol (i.e., TCP=6, UDP=17, ICMP=1) 

gave the data for IP to send. Beyond the header (beginning the 21st byte), the appropriate 

IP-wrapped protocol packet composes the IP data field, based on the value of the protocol 

byte. The last two words are the decimal value of the packet’s IP source and destination 

address.  
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Figure 24: IP datagram packet [Stevens94] 
 

If the IP protocol byte value equals six, then we conclude this IP packet is more 

specifically a TCP/IP—or “TCP over IP”—packet; in other words, the 21st byte of this IP 

packet is the first byte of the TCP header. The TCP packet, shown in Figure 25, also has 

a fixed header of 20 bytes with a variable byte-size payload. The first word contains the 

port (or service) number of this packet. The second word assists in ensuring TCP packets 

are read in the correct order received as sent, as packets can traverse varying routes and 

arrive at different times, possibly out of order. The third word is the value of the second 

word plus one, sent back to the original sender, confirming to that sender his packet was 

received. In the fourth word, subtracting this TCP header length and IP header length 

from the IP total length yields the TCP payload size and starting byte. The six Boolean 

flag bits, URG, ACK, PSH, RST, SYN and FIN assist in packet control and connection 

setup and teardown.  
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Figure 25: TCP packet [Stevens94] 
 

If the IP protocol byte value equals 17, then we conclude this IP packet is more 

specifically a UDP/IP—or “UDP over IP”—packet; in other words, the 21st byte of this 

IP packet is the first byte of the UDP packet (Figure 26). This protocol’s header is only 

eight bytes because it doesn’t require (i.e., it’s not responsible) for ensuring successful 

end-to-end transmission (or stateful session)—this is a “fire and forget” stateless 

protocol. The first word contains the source and destination ports. In the second word, we 

are concerned only with half-word UDP length, as subtracting this from the UDP header 

length yields the UDP payload size and start byte. 
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Figure 26: UDP packet [Stevens94] 
 

If the IP protocol byte value equals one, then we conclude this IP packet is more 

specifically a ICMP packet; in other words, the 21st byte of this IP packet is the first byte 

of the ICMP packet, shown in Figure 27. In the first word, the first two bytes determine 

the type of message this is, which is detailed after the first word for a variable size. 

 

 

Figure 27: ICMP packet [Stevens94] 
 

Each component selected for the Ag is individually encoded from decimal into a 

binary gene—a building block or subset of bits of our chromosome. All genes 

contiguously aligned by order of field compose one Ag chromosome. This idea of Ag 
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encoding came from Harmer and Williams whose chromosome length was 320 bits, 

leaving the trailing 11 bits for payload consideration [HWGL02, Williams01]. Our 

encoding scheme differs by disregarding payload, several IP and TCP fields and the 

validity bit, yielding Ags ranging in size between 138-240 bits, depending on the 

underlying protocol (Table 3). 

 

Gene 
# 

Field Possible 
Values 

Start 
Loc 

Gene 
Bits 

Comment 

IP Field: Common to all packets 
1 IP overall packet 

length 
0-65535 0 16  

2 datagram 
identification number 

0-65535 16 16  

3 3-bit flag & 13-bit 
fragment offset 

0-65535 32 16 Values 2, 4 possible and legal; all 
others suspect [Williams01] 

4 time-to-live (TTL) 0-255 48 8  
5 Protocol type 1 (TCP), 

2 (UDP), 
3 (ICMP) 

56 2 “0” corresponds to IP packets not 
of the underlying TCP, UDP, or 
ICMP protocol; by forcing TCP=1 
(originally 6), UDP=2 (originally 
17) and ICMP=3 (originally 1), we 
shorten number of bits from 8 to 2 

6 IP Src Address A octet 0-255 58 8  
7 IP Src Address B octet 0-255 66 8  
8 IP Src Address C octet 0-255 74 8  
9 IP Src Address D octet 0-255 82 8  
10 IP Dst Address A octet 0-255 90 8  
11 IP Dst Address B octet 0-255 98 8  
12 IP Dst Address C octet 0-255 106 8  
13 IP Dst Address D octet 0-255 114 8  

TCP Fields 
T14 TCP source port 0-65535 122 16  
T15 TCP destination port 0-65535 138 16  
T16 TCP Sequence number 0-

4294967295 
154 32  

T17 TCP Ack number 0-
4294967295 

186 32  

T18 TCP URGent flag 0-1 218 1 1 = set, 0 = not set 
T19 TCP ACK flag 0-1 219 1  
T20 TCP PuSH flag 0-1 220 1  
T21 TCP ReSeT flag 0-1 221 1  
T22 TCP SYN flag 0-1 222 1  



 

89 

T23 TCP FINish flag 0-1 223 1  
T24 TCP window size 0-65535 224 16  
 TCP data  240  Not currently used 

UDP Fields 
U14 UDP Src port 0-65535 122 16  
U15 UDP Dst port 0-65535 138 16  
U16 UDP length 0-65535 154 16  
 UDP data  170  Not currently used 

ICMP Fields 
I14 ICMP type 0-255 122 8  
I15 ICMP code 0-255 130 8  
 ICMP checksum 0-65535 138 16 Variable, depending on type and 

code; not currently used 
 ICMP data    Not currently used 

Table 3: Antibody signature design [adapted from HWGL02] 
 

An example of an encoded TCP DNA Ag chromosome is depicted in Figure 28. 

Here, all IP and TCP fields have been selected, resulting in a 240-bit chromosome, which 

dictates the initialized TCP Ab population to be of fixed length 240 bits, as well.  

 

1001110001110011001

IP encoded gene #1-13 = 122 bits

Packet length (16b) Dst. Addr. D-octet (8b)…

TCP encoded gene #T14-T24 = 118 bits

Src port (16b) Window size (16b)…

 

Figure 28: Example encoding of a IP and TCP header to form a TCP DNA chromosome 
 

4.3.2 Antibody Population Generation 

When Ag chromosome encoding is determined, the fixed-length TCP, UDP and 

ICMP Ag are known: a TCP Ag = |IP| + |TCP|, a UDP Ag = |IP| + |UDP| and a ICMP Ag 

= |IP| + |ICMP|. These three values, along with the user-defined size of the TCP, UDP 

and ICMP Ab populations, provide the information required to perform Ab initialization. 
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Three individual Java ArrayLists, representing the population pools, are instantiated to 

hold each created Ab integer array. An Ab is composed of three contiguous parts: 

1. its chromosome of binary values, defined through negative selection; 

2. its RNA memory, initialized to zero; 

3. seven parameters that define the state of the Ab, all initialized to zero: 

λ  name (integer identifier); 

α  number of false detections; 

ρ  (true positive + true negative) fitness score; 

φ   (false positive + false negative) fitness score; 

η   deviation from negative selection-defined affinity threshold (determining  

          volume); 

β   broadcasted (0=no, 1=yes; only happens once in its lifetime); 

ψ   number of Abs that Pareto-dominate this Ab. 

When Abs are first generated at negative selection, their data structure is only the 

first part—its chromosome—because the RNA memory and parameters serve no purpose. 

These latter two parts are attached to each Ab upon loading them into their respective 

populations for post-negative selection evaluation. An example of a TCP Ab 

chromosome is shown in Figure 29. Here, this Ab’s RNA matches its chromosome, is 

named “3”, has two false detections, a true detection fitness of 38, a false detection 

fitness of 126, an affinity shrinking of 2%, has been broadcasted and is dominated by two 

other Abs.  
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Parameters = 7 array elementsAb DNA = 240 elements
RNA copy of Ab =

240 elements

Random binary values

= 1= 3 = -2= 38 = 126= 20 = 210110010110 α βφ η ψλ ρ

 

Figure 29: Example 240 bit (487-element) TCP Ab chromosome 
 

A chromosome of length 240 is really 487 elements long because the RNA is the 

same length as the DNA and then eight state parameters follow. This does not result in 

additional computational cost as only the DNA is ever computed upon, allele by allele. 

4.4 AIS-Inspired MOEA Pseudocode 

Section 3.3 introduced the layered complexity involved in designing an AIS-

inspired MOEA. Figure 30 has been adapted from Timmis’ AIS abstract model (from 

Section 2.3) to represent jREMISA’s integration. The foundation is based on the ID 

domain, facilitated by the data set introduced in Chapter 5.3. Ab and Ag data structure is 

the integer array, where the DNA and RNA is composed of zeros and ones and the 

parameters are signed integer values. Our affinity measure is Hamming distance. The 

immune algorithm employed is an integration of REALGO and MISA operators, minus 

recombination, within a Bäck EA ordering. 
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Figure 30: jREMISA applied to Timmis’ AIS abstract model 
 

This defined framework provides enough information to map our operators into 

an ordered sequence, depicted in Figure 31, subsequently enabling pseudocode to be 

generated, as shown in Algorithm 3. This algorithm changes the order of Bäck’s EA 

within the while loop by placing evaluation first instead of last. This is due to the 

influence of the original MISA algorithm order. While Algorithm 3 shows jREMISA as a 

single algorithm of execution, jREMISA actually executes in two separate phases: “Phase 

I: negative selection” (Algorithm 3, lines 3-7) and “Phase II: core MOEA” (Algorithm 3, 

lines 8-19), because while both operations compose the MOEA, jREMISA halts upon 

completion of the first phase. This action allows the jREMISA operator to consider if the 

trained-and-immature population is worthy of being input into the rest of the MOEA. 
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ETHEREAL: filter MIT-DARPA data set for only TCP, UDP, ICMP packets 

jREMISA: verification function to ensure filtered data set fully parses

Pre-processor
directives

USER: define data set IP fields, initial population sizes, affinity threshold, input clean
data set filename, output population XML filename; start Negative Selection

Initial, random binary value populations generated

Secondary, “elitist 5%” external population initialized as empty

Secondary, external population initialized as empty

NEGATIVE SELECTION

Save remaining populations and genes to XML file and halt jREMISA

USER: define input population filename, input attack data
set filename, truth set, whether networking is enabled; start MOEA

Data set 
evaluation
complete?

YES NO

Cauchy mutation and
affinity maturation

Perform P*-test against
surviving Abs

Select top 5% of nondominated
and least dominated Abs and

copy into secondary population

Clone secondary population
Abs equally until 600% size

Uniform mutation of clones in
secondary population

Network
mode

enabled?

Fittest Abs from secondary 
population compose next 

generation primary population

YES

NO

Broadcast new
Nondominated Abs

Save Ab population
and PF* to XML file

Cull all remaining dominated 
from secondary population

Check container for UDP-captured
Abs; evaluate for secondary pop.

P
H
A
S
E

I

P
H
A
S
E

II

Fitness-compute incoming Ag
to Ab pool of same protocol

 

Figure 31: jREMISA algorithm flowchart 
 

1 procedure jREMISA 
2 begin 
3 repeat 
4      Randomly generate initial TCP, UDP, ICMP Populations (Pp) 
5      Initialize empty secondary Population (Ps) 
6      negative_selection(Pp,data_setclean,threshold) /* Evaluation 1 */ 
7 until (end of data_setclean) 
8 repeat 
9      fitness function (ag) /* evaluation_2 */ 
10      mutationCauchy(Pp) 
11      P_optimality() /* evaluation_3 */ 
12      clonalSelection(0.05) 
13      mutationUniform(Ps) 
14      Pp  Ps  /* copy best of Ps as next gen’s Pp */ 
15      if (networking) 
16           broadcast(Ps)  /* offer nondominateds to other AISs */ 
17           processReceived()  /* Any captured Abs from others? */ 
18      endif 
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19 until (end of data_setattack) 
20 end 

Algorithm 3: jREMISA pseudocode 

4.4.1 Phase I: Negative Selection 

Negative selection involves three parameters: the populations to train, the clean 

data set that trains the populations, and the affinity threshold. The random values that 

initialize the chromosome alleles are determined by Java’s native Random class. The 

number of generations of execution is equal to the number of packets in the self-only data 

set. Based on the affinity threshold parameter set by the user, all Abs that react to the self 

Ag comparator are removed from the population, without replacement. We did this rather 

than retrain the Ab through mutation because of the possibility a trained Ab may now 

match at least one self Ag previously tested. Upon completion of this phase, jREMISA 

halts, awaiting further input. Pseudocode for this phase is given in Algorithm 4. 

 

1 procedure negative_selection(Pi,data_setclean,threshold) 
2 begin 
3 repeat 
4      ag  encode_Ag(data_set_packet) 
5      for (i 0 to size(Pi))  /* Pi  random, initial population */ 
6           ab  Pii 
7           score  HammingScore(ab,ag) 
8           if (score >= threshold) 
9                remove(Pii) 
10           endif 
11      next (i) 
12 until (data_set = end_of_file) 
13 end 

Algorithm 4: jREMISA negative selection pseudocode 
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4.4.2 Phase II: Core MOEA 

This phase, given the population and several other user-defined parameters, 

executes the remainder of MOEA algorithm. Per Algorithm 3, this phase performs the 

fitness function, Pareto optimality, mutation, selection and nondominated Ab-

broadcasting (if enabled) upon each Ab, where the number of generations is equal to the 

number of data set network packets. 

Fitness Function 

The fitness function (Algorithm 5) calculates the number of false detections, true 

and false detection integer fitness and affinity threshold deviation value for each Ab. Our 

fitness scoring method is based on the fitness scoring model conceived by Smith Forrest 

and Perelson in their search for diverse, cooperative populations with GAs [SFP93] but 

tailored to our MOEA. The RNA storage and reversion functions and Cauchy mutation 

method are REALGO-inspired. To aid the fitness function, a Java TreeSet stores all 

extracted non-self packet identifying numbers in ascending order to guide the outcome of 

the Ab classification. The non-self packet determination methodology is further discussed 

in Appendix B. 

 

1 procedure fitness_function(Pi,data_set,threshold) 
2 begin 
3 repeat 
4      ag  encode_ag(data_set_packet) 
5      for (i 0 to size(Pi)) /* Population of same protocol as Ag */ 
6           ab  Pii 
7           (H,HammingMask)  HammingScore(ab,ag) 
8           score  (H / length(ag)) 
9           if (ag == self && score < threshold)  /* true neg */  
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10                abfitness1  abfitness1 + H 
11                abRNA  ab 
12                abthreshold  abthreshold + 1 
13                mutateAllele  1 
14           else if (ag == non-self && H >= threshold) /* true pos */ 
15                abfitness1  abfitness1 + (length(ag) – H) 
16                abRNA  ab 
17                abthreshold  abthreshold + 1 
18                mutateAllele  0 
19           else if  (ag == self && H >= threshold)  /* false neg */ 
20                abfalseDetections  abfalseDetections + 1 
21                if (abfalseDetections == lifespan) 
22                     remove(ab) 
23                     break 
24                end if 
25                ab  abRNA  
26                abfitness2  abfitness2 + H 
27                abthreshold  abthreshold – 1 
28                mutateAllele  1 
29           else if (ag == non-self && H < threshold) /* false pos */ 
30                abfalseDetections  abfalseDetections + 1 
31                if (abfalseDetections == lifespan) 
32                     remove(ab) 
33                     break 
34                end if 
35                ab  abRNA 
36                abfitness2  abfitness2 + (length(ag) – H) 
37                abthreshold  abthreshold – 1 
38                mutateAllele  0 
39           end if 
40           ab  CauchyMutation(ab,HammingMask,mutateAllele) 
41      next (i) 
42 until (data_set = end_of_file) 
43 end 

Algorithm 5: jREMISA fitness function pseudocode 

 

The Hamming equation serves two purposes: sum the number of complimentary 

bits as Hamming score H and mark the allele positions of complementarity with a “1” 

value, in what we developed as a “Hamming mask.” For any outcome, there is a penalty 
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added to the true classification (called fitness1) or false detection fitness (called fitness2) 

scores involving the H value. The Hamming mask is the heuristic that mutation uses to 

determine which alleles to mutate. There are four possible outcomes for each Ab, each 

having a unique consequence: 

1. the Ag is self and the Ab declares self (true negative): 

a. add H to fitness1, penalizing one point for every allele of complementarity; 

b. save DNA chromosome as its RNA for correctly classifying the Ag; 

c. increment (reward) Ab’s affinity deviation by one, enlarging its volume; 

d. mark the Hamming mask alleles with a “1” for Cauchy mutation because 

there should not have been complementarity between two selfs. 

2. the Ag is self and the Ab declares non-self (Type-II error: false negative): 

a. increase the “false detections” counter by one (and remove from 

population if false detection threshold reached, bypassing the remaining 

operations); 

b. restore Ab DNA chromosome with its RNA, as it was more effective than 

this Ab’s mutation from last generation; 

c. add H to fitness2, penalizing one point for every allele of complementarity; 

d. decrement (penalize) Ab’s affinity deviation by one, shrinking its volume; 

e. mark the Hamming mask alleles with a “1” for Cauchy mutation because 

there should not have been complementarity between two selfs. 
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3. the Ag is non-self and the Ab declares non-self (true positive): 

a. add opposite of Hamming score (Aglength – H) to fitness1 because there 

should have been more complementarity; 

b. save DNA chromosome as its RNA for correctly classifying the Ag; 

c. increment (reward) Ab’s affinity deviation by one, enlarging its volume; 

d. mark the Hamming mask alleles with a “0” for Cauchy mutation because 

there should have been more complementarity between self and non-self. 

4. the Ag is non-self and the Ab declares self (Type-I error: false positive): 

a. increase the “false detections” counter by one (and remove from 

population if false detection threshold reached, bypassing the remaining 

operations); 

b. restore Ab DNA chromosome with its RNA, as it was more effective than 

this Ab’s mutation from last generation; 

c. add opposite of Hamming score (Aglength – H) to fitness2 because there 

should have been more complementarity; 

d. decrement (penalize) Ab’s affinity deviation by one, shrinking its volume; 

e. mark the Hamming mask alleles with a “0” for Cauchy mutation because 

there should have been more complementarity between self and non-self. 

When a Ab’s chromosome is reverted to its RNA upon a false detection, the 

remaining parameters of the Ab are unchanged; in other words, parameters do not carry 

when an RNA copy of an Ab is made. Having the Hamming mask and the alleles to 

target now allows us to perform heuristic-based Cauchy mutation. Each Ab has its own 
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volume, defined by its threshold deviation parameter added to the negative selection-

defined affinity threshold value.  

Heuristic-based Cauchy-mutation 

While REALGO gives each allele a 50% chance of Cauchy mutation (see Section 

3.6.3), we heuristically determine the number and position of alleles to mutate based on 

our Hamming mask. As just discussed, Abs that did not have enough complementarity 

are penalized for the remaining alleles not complementary (mutateAllele  0). 

Conversely, Abs that should not have experienced complementarity are penalized for the 

alleles that were complementary to the Ag (mutateAllele  1). Ab alleles are mutated in 

this manner because the alleles that are properly complementary should not change value, 

as shown in Figure 32. 

the allele chosen for Cauchy mutation

0001110011001Ag
Hamming Distance
Calculation; H = 8

1011101001110

mutateAllele 01010011010111Ab

mutateAllele 11010011010111Ab
OR

Hamming Mask

1010011010111Ab

 

Figure 32: Allele selection process for Cauchy Mutation 
 

 



 

100 

Clonal Selection 

Although the top 5% of primary population-Abs are copied into the secondary 

population, with the intent of being cloned, only those Abs new to the secondary 

population are cloned. The “name” parameter on each Ab enables this determination. 

Upon cloning completion, Quicksort is applied to put the secondary population in 

“number of Abs dominated by”-ascending order in order to minimize the time required to 

copy enough of the fittest Abs from the secondary population to restore the original size 

of the primary population (if required, in the event any Abs were lost from the primary 

population due to excessive false detections). The selection pseudocode is shown in 

Algorithm 6. 

 

1 procedure selection(0.05,popp,pops) 
2 begin 
3 repeat  /* Copy top 5% to secondary pop */ 
4      copyToSecondary(popp.get(i)) 
5      i  i + 1 
6 until (i == 0.05*size(popp)) 
7 numClones  (size(pops)*6 / i)  /* Num clones per Ab */ 
8 repeat  /* uniformly clone Abs to 600% pops size  */ 
9      ab  popp.get(i) 
10      j  numClones 
11      repeat 
12           abc  copy(ab)  /* clone if new to secondary pop */ 
13           mutation(abc, abdominated_score) 
14           copyToSecondary(abc)  /* insert into pops */ 
15           j  j – 1 
16      until (j == 0) 
17      mutation(ab, abdominated_score)  /* mutate original ab, too */ 
18      i  i - 1 
19 until (i == 0) 
20 QuickSort(pops)  /* ascending sort of Abs by “dominated” score */ 
21 popp  copyToPrimary(pops, size(popp))  /* evolution: μ λ+ */ 
22 i  size(pops) 
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23 repeat  /* Cull pops to nondom-only, no larger than primary pop */ 
24      ab  pops.get(i) 
25      if (abdominated_score > 0) 
26           remove(pops,ab) 
27      end if 
28      i  i - 1 
29 until (i == 0) 
30 end 

Algorithm 6: jREMISA selection pseudocode 

4.5 Distributed Communication Model 

Our distributed communication model is based on Grama, Gupta, Karypis and 

Kumar’s definition of data decomposition [GGKK03]. We partition a particular day’s 

data set into c equal sizes, where c is number of computers executing jREMISA. Hence, 

each jREMISA is evaluating an equal portion of the data set in a distributed island model, 

broadcasting nondominated Abs to each other’s secondary population in an effort to 

synergistically strengthen effectiveness in the AIS system, as a whole subnet. Hence, our 

intent for pursuing distributed execution is geared more toward increasing effectiveness 

than the expected c-fold increase in efficiency. 

To facilitate communication, jREMISA binds to one UDP port for listening and 

one for broadcasting. The listener class must spawn its own Java Runnable class thread 

of concurrent execution because it blocks execution until receiving information from the 

broadcast port. Each message, whether a nondominated Ab or user message, is sent in a 

single UDP packet to IP address 255.255.255.255, where it is summarily broadcast to all 

jREMISA listeners on the subnet, as depicted in Figure 33.  
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Figure 33: jREMISA distributed communication architecture 
 

In Figure 33, jREMISA-1 sends a newly discovered nondominated Ab, wrapped 

in a UDP packet, to IP address 255.255.255.255. All jREMISA listener threads capture 

the message, unwrap it and send the payload content to its respective kernel, where it is 

examined only after a generation ends. Ab payloads captured by the listeners are Pareto 

optimality-evaluated against their secondary population and added if that Ab remains 

nondominated. Abs are broadcast only once in their lifetime. Java synchronized methods 

and volatile variables are employed to ensure thread-safe passage of broadcast Abs into 

the dynamically-changing secondary population. Instant messages are simply received 

and sent to the GUI display console. The UDP payload, depicted in Figure 34, consists of 

the sender IP address, machine hostname, message type and the user message or Ab 

integer array. 
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User message GUI console announcement

Ab secondary population consideration

Ab AbRNA

Message 
type = 2
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sender IP
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OR

 

Figure 34: UDP-broadcast payload structure 
 

4.6 Population Persistence 

Software persistence involves the long-term storage of data, for future reference. 

For example, volatile storage involves an algorithm’s execution and data manipulation in 

memory; once power is lost or the algorithm terminates, the memory is lost. Non-volatile 

storage persists data to long-term storage mediums such as hard disk and removable, 

flash-memory “thumb drives.” While our algorithm outputs the Pareto optimal values at 

post-execution, we desire to know the Ab data structure behind that set of values for 

analysis and future ID domain employment. Our algorithm preserves post-execution 

output in XML format based on the executed function: 

1. NEGATIVE SELECTION: saves the user-defined data structure and trained-but-

immature Ab populations (Figure 35); 

2. Core MOEA: saves the user-defined data structure, number of generations, 

runtime in seconds, elitism percentage, affinity threshold, true classification rate, 

false detection rate, attack graph x- and y-vectors, and each secondary 
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population’s set of Abs with accompanying Pareto Front x- and y- vectors (see 

Section D.2.3, Figure 60). 

 

 

Figure 35: Example XML post-negative selection file 
 

XML files serve as a “Petri dish,” enabling population re-use. For example, if the 

user wants to perform negative selection over five different data sets before applying the 

attack set, the saved post-negative selection XML file can be reloaded for continued 

negative selection over four additional times before specified as the input file for the 

attack set evaluation. In addition, post-MOEA Petri dishes allow for trained-and-mature 

population re-use in further ID domain evaluations. 
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4.7 Summary 

This Chapter discusses our low-level design and software implementation plan in 

order to prosecute problem domain input. The next chapter discusses the testing and 

experimentation performed using this software and the analysis of our computational 

results. 
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V. Experimentation and Analysis 

 

The previous two chapters discussed the high- and low-level methodology for 

complete prototype implementation. This chapter presents the experimentation and 

analysis plan intended to produce results which can be evaluated against our hypotheses 

objectives and other algorithms employing the same data set and experiments. Section 5.1 

begins by describing our testing environment and objectives, with background on the test 

functions and data sets used in facilitating these tests. Section 5.2 provides validation for 

the migration of REALGO and MISA to jREALGO and jMISA. Section 5.3 validates 

jREMISA against the benchmark ID data set. Section 5.4 then compares our work to 

others who have applied this data set as their application domain. Section 5.5 summarizes 

by reviewing the outcome of our experiments and how it impacted our hypothesis 

objectives. 

5.1 Experimental Objectives and Design 

The purpose of these experiments is to determine if an AIS-inspired MOEA is 

useful in effectively classifying network events while its Abs maintain an optimally 

known hypervolume. The experimental results provide the measurements that our 

hypothesis objectives require in order to declare whether our conjecture is valid. Our 

experiments are divided into three parts: 

1. validation of the C-to-Java algorithm migration through test functions; 

2. measuring the effectiveness of jREMISA by evaluating the  ID domain data set in 

13 different scenarios: 



 

107 

a. 10 standalone execution scenarios, involving at least one evaluation of 

each day of an entire week of attacks; 

b. three distributed island model executions in a two-, three- and four- 

jREMISA configuration; 

3. determining jREMISA’s worth against other algorithms applied to the same 

problem domain through statistical analysis. 

5.1.1 Testing Environment 

Algorithm evaluation is conducted in two configurations: standalone and 

distributed island model, involving the following computers, which we identify by name: 

1. “PC1”  Dell Inspiron 710m laptop, 2.0 GHz Pentium M, Intel Centrino 

processor, two GB of RAM, Windows XP Professional 2002, Service Pack 2; 

2. “PC2”  Dell XPS laptop, 3.4 GHz Pentium 4 Hyper-Threading processor, one 

GB of RAM, Windows XP Professional 2002, Service Pack 2; 

3. “PC3”  Dell Precision laptop, 1.8 GHz Pentium 4 processor, one GB of RAM, 

Windows XP Professional 2002, Service Pack 2; 

4. “PC4”  Dell Optiplex GX270 workstation, 2.6 GHz Pentium 4 processor, 512 

MB of RAM, Windows XP Professional 2002, Service Pack 2. 

The standalone configuration employed PC1. The distributed phase involved all four 

machines connected via Category-5 network patch cables to a Cisco 4-port wireless 

router transmitting at 100 mbps. In order to take advantage of as much of the machine’s 

memory as possible, the Eclipse-exported jREMISA JAR is executed independent of 

Eclipse in the Windows COMMAND PROMPT with the command line argument, “java –
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XX:+AggressiveHeap –jar jREMISA.jar”. In doing this, we observed Windows Task 

Manager reporting jREMISA utilizing 0.7 GB of virtual memory, 220 MB of physical 

RAM and 95% CPU usage during execution. 

5.1.2 Test Functions and Data Sets 

In comparing one ID algorithm’s effectiveness and efficiency against others over 

the same problem domain, instruments of validation must be applied that are standardized 

and recognized by the scientific community in order to be accepted. Test functions are 

widely accepted mathematical equations that evaluate a given input (a single or set of 

values), and return how close that input came to the test function’s defined optimal 

value(s), within given constraints. Competing algorithms incorporate the same test 

function, allowing for an objective comparison of the output in determining the superior 

algorithm. Our jREALGO and jMISA employ the same test functions as REALGO and 

MISA in comparing output, described in Section 5.2. 

Data sets are the opposite of test functions in that they are standardized sets of 

data that evaluate the effectiveness and efficiency of an algorithm, based on standardized 

statistical measures employed. ID algorithms have two well known data sets: the MIT-

DARPA Lincoln Laboratory (LL) 1999 Intrusion Detection data set [MITDARPA99] and 

University of California-Irvine 1999 KDD Cup data set [KDD99]. We chose the 1999 

MIT-DARPA data set corpus for its large scale and variety of context-based attacks. This 

data set, formally introduced in Section 5.3, allows us to measure our algorithm’s 

performance against the LL truth set and objectively compare our results against other 



 

109 

algorithms applied to this same data set. Further details on the KDD Cup 99 corpus are in 

Appendix C. 

5.2 C-to-Java Migration 

In order to validate jREALGO and jMISA against their C-based parent programs, 

the Java programs are initialized to the same parameters and test functions as their C 

parent. For each of the 30 trials, the generation count of both implementations is equally 

increased to ensure correlating output between both programs. Because both programs 

are stochastic in nature, results vary. At the end of the 30 trials, we desire to observe Java 

output that is as good as or better than the C output. The sole validating factor of this 

experiment is effectiveness because duplicate results, more than execution time, is 

indicative of a proper replica. 

REALGO vs. jREALGO 

In comparing REALGO to jREALGO, we discovered jREALGO is 

approximately 11 times less efficient but slightly more effective than REALGO. 

Executed 30 times between a 450 and 5000 Ab population, jREALGO appeared to 

maintain a proportional loss of efficiency to REALGO (Figure 36), which we compared 

simply for purposes of runtime observation. 
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Figure 36: Runtime comparison between REALGO and jREALGO 

 

In determining effectiveness, we chose Yao and Liu’s test function (Equation 6) 

that was evaluated by REALGO because it was the only one in the REALGO set of 

experiments that yielded a non-zero optimal minimum score of -12569.5 [Yao97]: 

1
( sin( | |))

n

i i
i

x x
=

−∑               (6) 

with the landscape constrained to values ranging [-500,500]. 

Using Equation 6, we discovered jREALGO is slightly more effective in terms of the best 

and average fit antibodies for both size populations, as graphed in Figure 37 and Figure 

38. This may not be true in every trial due to the stochastic nature of the algorithms and 

the fact they were executed in different programming languages, having differing random 

seed generators. In terms of standard deviation, neither algorithm is better due to 
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REALGO having a worse (higher) standard deviation in the smaller population but better 

(smaller) standard deviation in the larger population, graphed in Figure 39 and Figure 40.  
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Figure 37: Fitness comparison between REALGO and jREALGO: 450 generations 
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Figure 38: Fitness comparison between REALGO and jREALGO: 5000 generations 
 



 

112 

Standard Deviation vs. Generations
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Figure 39: Standard deviation comparison between REALGO and jREALGO: 450 
generations 
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Figure 40: Standard deviation comparison between REALGO and jREALGO: 5000 
generations 

 

Therefore, due to the effectiveness of jREALGO, we conclude its migration from 

C to be validated. 
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MISA vs. jMISA 

In comparing MISA to jMISA, we discovered jMISA to be initially four times 

less efficient than MISA but that in the larger population, its factor of ineffectiveness 

decreased to a factor of 3.4, as graphed in Figure 41.  In comparing the best, average and 

worst runtimes of both algorithms for both population sizes in Figure 42, we discovered 

the runtime deltas to be constant between best, average and worst, and that jMISA’s 

factor of inefficiency slightly drops for the larger population. 

 

MISA Runtime Comparison

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Trial

R
un

tim
e 

(m
s) MISA 12k

jMISA 12k

MISA 20k

jMISA 20k

B
E
T
T
E
R

 

Figure 41: Runtime comparison between MISA vs. jMISA 
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MISA 1st-order Statistical Analysis
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Figure 42: Statistical runtime comparison between MISA and jMISA 
 

Test functions for MOEAs are more complex, as they require at least two 

variables. Hence, MISA used the Kita-proposed function [Kita96]: 

        

2
1

2

( , ) ,
1( , ) 1
2

f x y x y

f x y x y

= − +

= + +
             (7) 

with constraints 

1 13 1 15, 0, 0 , 0 , 0 5 30
6 2 2 2

x y x y x y x y≥ ≥ + − ≥ + − ≥ + − . 

MISA and jMISA’s vector of known Pareto Front solutions, along with the MISA 

author’s true Pareto Front value set, were input into MATLAB9 which plotted the Fronts 

                                                 

9 MATLAB ® a high-level language and interactive environment that enables  
you to perform computationally intensive tasks faster than with traditional programming languages such as 
C, C++, and Fortran, http://www.mathworks.com/products/matlab/. 
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depicted in Figure 43. The genotype space of both MISA and jMISA exhibit the same 

concave shape and appear to share the space of the true Pareto Front. 

BETTERBETTER  

Figure 43: Plotted MISA, jMISA known Pareto Fronts and MISA’s true Pareto Front 
 

With all three data sets sorted in descending order, Euclidian distance calculation is 

applied to each MISA and jMISA solution point and the true Pareto Front point closest 

to it, as shown in Figure 44. Here, MISA has the preponderance of Abs with shorter 

distance to the true Pareto Front but jMISA possesses the few closest (shortest distance 

to the Front) points. 
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BETTER
 

Figure 44: PFknown vs. PFtrue point Euclidian-distance differential between MISA and 
jMISA 

 

Based on the genotype similarly of both algorithms known Pareto Front, 

combined with the jMISA’s shorter distance to the true Pareto Front, we conclude the 

jMISA program to be effective and validated. 

5.3 1999 MIT-DARPA ID Data Set Evaluation 

Data sets composed of simulated computer network traffic are currently the only 

available way of emulating a distributed computing environment containing both self and 

non-self events. The MIT-DARPA ID evaluation took place in both 1998 and 1999. LL 

coordinated with DARPA and the Air Force Research Laboratory (AFRL) to develop 
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several weeks’—five days per week—worth of raw TCP dump network traffic on the 

scale of a notional Air Force Base. 

jREMISA was evaluated against the 1999 over the 1998 data set specifically 

because of the former’s upgrade to allow for detection of new attacks without first 

training on instances of the attacks [Lippmann00]. This was made possible through the 

inclusion of two weeks of self-only data, enabling jREMISA to perform negative 

selection. The intent of the self-only data sets is for ID systems to train against the clean 

sets and use that knowledge to effectively discover attack packets within the attack data 

sets, as explicitly recommended by LL [MITDARPA99]. 

Our algorithm uses the first two weeks of the 1999 corpus: the first week of self-

only traffic to negative-select our Abs and the complete second week of insider-only 

labeled attacks to evaluate the effectiveness of our trained Abs. In evaluating jREMISA 

against the second week attack landscape to the fullest extent possible, we dissected as 

many of the IP header (context)-based labeled attacks as possible (i.e., a DoS packet 

sequence over a user-typed telnet exploit). This extraction methodology, explained in 

Appendix B, allowed us to procure jREMISA truth tables for 16 of the 43 LL-labeled 

attacks, covering all five days. When mapped to the “1999 week-two insider” landscape 

in Figure 45, we see attacks to be fairly distributed in both time of day and day of week, 

varying in size of packets, as detailed in Table 4. Figure 46 provides the trend of total 

event activity to non-self activity, for each day of the week. 
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In summarizing the domain breakdown and analysis of this week’s data set (see 

Appendix B): 

1. all five days of week-1’s clean data sets, filtered for TCP, UDP and ICMP 

constitutes 7,810,861 packets (for negative selection training); 

2. all five days of week-two’s labeled attacks constitutes 7,275,137 packets; 

3. all five day’s files filtered for TCP, UDP and ICMP packets constitutes 7,199,540 

packets (99.0% of the data set being jREMISA-evaluated); 

4. 16 of the 43 (37.2%) attacks were successfully dissected for Chapter 5 testing; 

5. of the 16 identified attacks, 53653 (0.745%) total non-self packets exist within the 

entire week’s search space where 676 (1.26%) events are ICMP and the 

remaining 52,977 (98.7%) events are TCP. 
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Figure 45: MIT-DARPA “1999 week-two insider” attack data set landscape with LL-
labeled attacks 
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Attack 
ID 

Attack 
Name 

Protocol Wall-Clock Time Elapsed Number 
Non-Self 

Mon, 3/8/99: 1,737,455 total events: 8 TCP, 241 ICMP (0.0143%) non-self events 
Attack day Ag ratio: 3.21% TCP, 96.79% ICMP 

2 pod ICMP fragmented 08:50:11 – 08:50:12 241 
5 land TCP 15:57:07 1 
7 ps attack TCP – FTP 19:09:06 – 19:09:18 7 

Tues, 3/9/99: 1,571,748 total events: 1552 TCP (0.0987%) non-self events 
Attack Day Ag ratio: 100% TCP 

8 portsweep TCP [FIN] 08:44:13 – 09:11:10 1030 
10 back TCP – HTTP 10:07:30 – 10:09:30 522 

Wed, 3/10/99: 995,235 total events: 15,512 TCP (1.5586%) non-self events 
Attack day Ag ratio: 100% TCP 

17 satan TCP [SYN] 12:02:18 – 12:04:33 10504 
18 mailbomb TCP – SMTP 13:44:10 – 13:54:06 5004 
22 crashiis TCP - HTTP 23:56:00 – 23:56:06 4 

Thurs, 3/11/99: 1,547,709 total events: 20,462 TCP (1.3221%) non-self events 
Attack day Ag ratio: 100% TCP 

23 crashiis TCP – HTTP 08:04:01 – 08:04:08 4 
25 portsweep TCP 09:33:09 – 09:33:12 10056 
26 neptune TCP [SYN] 11:03:51 – 11:07:16 10401 
29 land TCP – SMTP 15:46:46 1 

Fri, 3/12/99: 1,347,393 total events: 15,443 TCP, 435 ICMP (1.178%) non-self events 
Attack day Ag ratio: 97.26% TCP, 2.74% ICMP 

35 pod ICMP fragmented 09:18:11 – 09:18:12 435 
36 neptune TCP [SYN] 11:20:10 – 11:23:35 10381 
37 crashiis TCP - HTTP 12:40:09 – 12:40:16 4 
42 portsweep TCP [SYN] 17:13:02 – 17:25:04 5058 

Table 4: MIT-DARPA “1999 week-two insider” attack analysis 
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MIT-DARPA 1999 Week-Two Insider
Landscape Quantification
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Figure 46: MIT-DARPA “1999 week-two insider” landscape quantification 
 

All experiments performed involved all possible fields of the TCP, UDP, and 

ICMP headers, to fully evaluate our pattern-matching effectiveness. This means each 

TCP Ag was 240 bits, each UDP Ag was 170 bits and each ICMP Ag was 138 bits long.  

5.3.1 Negative Selection Results 

Our intent in testing various negative selection scenarios is to determine the 

optimal MOEA Ab population sizes and affinity threshold in order to maximize search 

space coverage without impinging upon self points in the attack-labeled evaluation. This 

raises the obvious question, “what is considered an optimal affinity percentage?” Our 

research did not find any case studies focused on determining a statistically validated 

percentage; hence, we start by randomly choosing equal starting population sizes and an 

affinity threshold and then adjust, accordingly, until we have post-execution TCP 



 

121 

populations similar in size to each of the Ab sets chosen by Williams in his Warthog 

experiments that evaluate this same data set: 32, 64, 128, 256, 512, 1024 and 2048 Abs. 

[Williams01]. 

Because we expect attrition and desire the largest surviving population to be at 

least at large as Williams’ largest Ab set of 2048, we initialize all three of our populations 

to the next base-two power of 4096 in order to result in a post-execution TCP population 

size of at least 2048. We choose Friday to perform this negative selection gauging 

because of all five days of the self-only week, Friday represents the closest average data 

set size of a single day, per Table 5. In observing surviving population rates for the first 

time, Table 6 (graphically depicted in Figure 47) shows the range of feasible affinity 

threshold values until the TCP population is empty: between 37-44%.  

User-required parameters for executing negative selection can be found in the 

jREMISA user manual (see Appendix D.2.2). 

 

Day Generations 
Monday 1,477,462 
Tuesday 1,222,696 

Wednesday 1,710,945 
Thursday 1,931,983 

Friday 1,467,775 
Table 5: Number of generations for each day of the 1999 week-one insider self-only 

traffic (filtered for TCP, UDP, ICMP only) 
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Affinity (%) Runtime(mins) End TCP survived End UDP survived End ICMP survived 
37 186.65 2663 65.015% 3737 91.235% 3707 90.503% 
38 124.20 1563 38.159% 3372 82.324% 3513 85.767% 
39 89.17 935 22.827% 2890 70.557% 3290 80.322% 
40 45.27 357 8.716% 2275 55.542% 2700 65.918% 
41 26.43 126 3.076% 2000 48.828% 2344 57.227% 
42 16.28 34 0.830% 1431 34.937% 1997 48.755% 
43 7.48 3 0.073% 808 19.727% 1259 30.737% 
44 6.22 2 0.049% 618 15.088% 978 23.877% 
45 4.10 0 0.000% 305 7.446% 472 11.523% 
46 3.53 0 0.000% 135 3.296% 325 7.935% 
47 2.90 0 0.000% 68 1.660% 184 4.492% 
48 2.62 0 0.000% 29 0.708% 45 1.099% 
49 2.42 0 0.000% 8 0.195% 36 0.879% 
50 2.13 0 0.000% 1 0.024% 6 0.146% 
51 2.13 0 0.000% 1 0.024% 5 0.122% 
52 2.13 0 0.000% 0 0.000% 3 0.073% 
53 2.12 0 0.000% 0 0.000% 0 0.000% 

Table 6: Post-negative selection analysis of TCP, UDP, ICMP populations starting at 
4096 against the Friday self-only data set of 1,467,775 packets 
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Figure 47: Negative selection attrition rate in 1,467,775 generations (Friday) with TCP, 
UDP and ICMP starting at 4,096 untrained Abs 

 



 

123 

In Figure 47, the TCP population attrits significantly quicker than the other two 

populations because, per Appendix B, TCP traffic quantitatively dominates the 

landscape. Figure 48 depicts the balance between the affinity threshold and runtime for 

each population starting with 4096 Abs. Conducting 30 runs for comparison and 

accuracy, we discovered a variance between ± 4% between runs, depicted by the bars 

within each point. 
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Figure 48: Affinity threshold vs. negative selection runtime for TCP, UDP, ICMP = 4096 
untrained Abs in 1,467,775 generations (Friday) 

 

Following negative selection, the trained population XML file is loaded into the 

core MOEA procedure of jREMISA, with several new required parameters defined (see 

Section D.2.3) including setting the elitism selection percentage to 5%, per [CC05].  
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5.3.2 Standalone MOEA Results 

Our intent in testing the core MOEA is to determine if a protocol-segregated 

population manipulated by the validated strengths of REALGO and MISA can effectively 

detect and classify a high percentage of self and non-self traffic over the entire week’s 

attack data set and disclose a patterned hypervolume of such effective detectors. For each 

day of the attack week jREMISA evaluates, it employs the negative selection-trained 

population of only that same day of the clean week, verses a trained population over the 

entire clean week. 

While the MOEA is executing, real-time updates of the classification rates, 

primary and secondary population size and generation count are performed. Upon 

completion, output is saved to an XML file, for analysis (see Appendix D.2.3). The 

results of all MOEA experiment scenarios are summarized in Table 7 and Table 8. These 

tables provide the overarching results of executions based on the data set, affinity 

threshold, and negative selection-survived populations. Our standalone testing 

methodology is to perform two tests in the following order: 

1. determine  optimal Ab affinity threshold value based on day’s false detection rate; 

2. use that threshold value in performing the standalone and distributed test 

scenarios. 

In Table 7, we perform 10 scenarios. The first six are meant to determine the affinity 

threshold we should choose from our feasible range to evaluate all days of the week 

based on the lowest false detection rate of the Thursday data set. We use the Thursday 

data set because it’s the same data set Williams used in his Warthog evaluations 
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[Williams01]. Results of the first six scenarios conclude the lowest false detection rate 

when the threshold is at 39%. Hence, scenario four is compared against seven through 10, 

using that benchmark threshold, in comparing each day to each other. The distributed 

experiments performed (in Table 8) in the last three scenarios also use this benchmark. 

 

 Self 
Events 

Non-self 
Events 

Scen- 
ario 

Day Gener- 
ations 

Affinity 
Threshold 

TCP 
Pop 

UDP 
Pop 

ICMP 
Pop 

Runtime 
 

True 
Neg% 

False 
Neg% 

True 
Pos% 

False 
Pos% 

1 Thurs 1547710 42% 37 86 248 39.12 m 53.78 46.22 62.6 37.4 
2 “ “ 41% 106 116 284 52.48 m 67.44 32.56 68.33 31.67 
3 “ “ 40% 315 146 341 3.61 hrs 76.10 23.90 76.92 23.08 
4 “ “ 39% 966 361 810 18.21hrs 85.45 14.55 97.66 2.34 
5 “ “ 38% 1580 423 881 2.36 days 86.48 13.52 92.51 7.49 
6 “ “ 37% 2564 462 927 5.83 days 82.52 17.48 99.71 0.29 
7 Mon 1737455 39% 969 349 846 20.02 hrs 85.36 14.64 99.90 0.10 
8 Tues 1571748 “ 922 362 882 18.86 hrs 84.61 15.39 97.35 2.65 
9 Wed 995235 “ 920 333 798 11.69 hrs 83.37 16.63 98.26 1.74 
10 Fri 1347393 “ 964 376 829 13.43 hrs 83.59 16.41 96.57 3.43 

Table 7: MOEA run summary: single jREMISA (highest effectiveness in bold text) 
 

 Self 
Events 

Non-self 
Events 

jREMISA 
machine ID 

Packet range 
(1547709 total) 

TCP 
Pop 

UDP 
Pop 

ICMP 
Pop 

Runtime 
 

True 
Neg% 

False 
Neg% 

True 
Pos% 

False 
Pos% 

Scenario 11: 2 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 773854 966 361 810 9.44hrs 
PC2 773855 – 1547709 936 344 854 9.63hrs 86.21 13.79 98.10 1.90 

Scenario 12: 3 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 515903 966 361 810 5.09hrs 
PC2 515904 – 1031807 936 344 854 6.35hrs 
PC3 1031808 – 1547709 951 357 826 6.86hrs 

84.31 15.69 97.94 2.06 

Scenario 13: 4 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 386927 966 361 810 4.33hrs 
PC2 386928 – 773854 936 344 854 4.63hrs 
PC3 773855 – 1160781 951 357 826 4.86hrs 
PC4 1160782 – 1547709 954 360 822 5.09hrs 

84.94 15.06 98.55 1.45 

Table 8: MOEA run summary: distributed jREMISA against Thursday data set (highest 
effectiveness in bold text) 
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Figure 49 graphically maps Table 7’s summary of jREMISA standalone 

classification effectiveness for each day of the attack week, with a ± 1% variance, as a 

result of multiple test runs. 
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Figure 49: Standalone effectiveness against each day of the MIT-DARPA 1999 week-two 
insider attack data set (39% affinity threshold) 

 

Having the overarching effectiveness results of the population, as a while, we now 

examine the effectiveness of the individual Ab detector. Figure 50 graphically depicts the 

fitness of the individual Ab detectors from the secondary tri-populations starting from a 

39% affinity threshold for all Abs. Because our MOP seeks the global minimum, we 

desire a C-shaped boundary as close to [0,0] as possible. jREMISA maps each Abs’ 

correct classification fitness score and affinity threshold deviation value into an x,y-point, 

respectively. These two vectors are input into MATLAB for plotting10. These Pareto 

                                                 

10 To graph secondary population Pareto Fronts into MATLAB, copy the XML file’s secondary population 
“Pareto-X” and “Pareto-Y” set of values into MATLAB variables x=[<Pareto-X>] and y=[<Pareto-Y>] and 
then type “plot(x,y,’d’)”. 
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Fronts are important for the decision-maker in selecting the most optimally sized Abs 

with the best fitness for future ID application. 

Two patterns are seen among almost all populations at the end of each day’s 

evaluation: 

1. the Pareto Front includes Abs in +4% or +5% deviation 73% of the time; 

2. Abs are concentrated at the +4% or +5% deviation value 87% of the time. 

Table 7 determined our most accurate classification to be when affinity threshold was 

initialized at 39%. Figure 50(a-o) depicts a pattern of Pareto Fronts and Ab 

concentrations to have an affinity threshold between 4% and 5% higher than this initial 

39% setting, leading to the conclusion of an optimally known individual Ab hypervolume 

between 39%-44%. Therefore, the trade-off to decision makers is picking Abs for future 

employment is that fitter Abs most likely will be larger, increasing the risk of future false 

positives while picking the more optimally sized Abs—while mitigating the false 

detection risk—results in a lower fitness. An exception to this is when a Pareto Front 

doesn’t materialize, as in Figure 50(a,e) where only a single optimally known solution 

exists, with the pattern indicating the larger the Ab, the worse the classification fitness. In 

this case, decision-makers will have to decide among the next best set of Ab solution 

points: dominated but feasible. 
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(o) 

Figure 50: Post-MOEA secondary population true Pareto Fronts 
 

Figure 51 depicts the attack graph: the classification declaration of each Ab for 

every non-self data set packet of that day’s data set, in order to determine the 

classification effectiveness of a single attack (non-self sequence). In plotting the non-self 

event points into MATLAB11, the x-axis denotes “-1” as false positive and “1” as true 

positive. The y-axis represents the packet number, increasing in a negative direction, 

allowing direct correlation of the classification of the attack, when referenced against the 

Figure 45 ID landscape. 

                                                 

11 To graph attack results into MATLAB, copy the XML file’s “X Vector” and “Y Vector” set of values 
into MATLAB variables x=[<X Vector>] and y=[<Y Vector>] and then type “plot(x,y,’d’)”. Then scale the 
graph with “axis([-2 2 -<size of data set> 0])”. 
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When comparing Figure 51(a,b,c), we see a trend where as the Ab population’s 

affinity threshold is linearly decreased. More “open holes” develop on the false positive 

side, indicating more correct classifications on the right side. Further, in Figure 51(c), 

two attacks—one 10401 non-contiguous packets long (LL attack ID #2612) and the other 

being one packet long (LL attack ID #29)—as having a 0% false positive rate for the 

entire population. In Figure 51(e), LL attack ID #7—seven packets long—has a 0% false 

positive rate; as does LL ID #22—four packets long—in Figure 51(g). 

In Lippmann’s discussion of the results of the off-line evaluation of the 1999 data 

set, he specifies that attacks were best detected when they produced a consistent signature 

or sequence of events in tcpdump data [Lippmann00]. However, the attack graphs of 

Figure 51(b,c) show that on two occasions, LL attack ID #29, the single-packet land 

attack, was detected with a 0% false positive rate, inferring jREMISA may have 

performed more effectively against this particular form of intrusion than the eight 

systems evaluated by Lippmann. 
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12 Reference Appendix B for LL attack index mapping. 
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5.3.3 Distributed MOEA Results 

During distributed execution and communication, we observed jREMISA 

broadcast, receive, and decide whether to accept received nondominated Abs into its 

secondary population (Figure 52). However, this methodology did not produce the 

pattern of synergistic effectiveness we conjectured, as the graphical mapping of Table 8 

depicts in Figure 53. However, to the distributed implementation’s credit, its two-

jREMISA configuration achieved the highest correct self classification rate of all 

standalone and distributed tests with 86.21% at the benchmark 39% affinity threshold. In 

addition, it did increase evaluation efficiency almost n-fold, where n is the number of 

computers involved in data decomposition of the tcpdump file (Figure 54).  

 

 

Figure 52: jREMISA screenshot of a two-system distributed island model execution 
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Standalone vs. Distributed Effectiveness: Thursday attack data set
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Figure 53: Standalone vs. distributed effectiveness: Thursday 
 

 

Stand-alone vs. Distributed Efficiency: Thursday attack data set
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Figure 54: Data decomposition-based distributed execution: efficiency vs. number of 
executing jREMISAs 
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5.4 Other MIT-DARPA ID Data Set Evaluation Algorithms 

Per Garrett’s definition of “useful,” in Section 1.3, an algorithm must be distinct 

and effective. In this context, an algorithm is effective if it provides better or more 

expedient results than another in a shared benchmark test. It was difficult to compare this 

work to others due to our scale of evaluation, as the entire week-two’s insider data set 

was analyzed. 

Williams’ Warthog 

In March, 2001, Williams’ award-winning thesis focused on interactive, 

evolutionary search techniques, in the context of a computer immune system, to detect 

computer network intrusions, with particular emphasis on stealthy and zero-day attacks 

[Williams01]. His system, Warthog, trained Abs with the same LL self-only data sets as 

ours but used an attack set consisting of only 2643 LL packets from Thursday’s attack set 

and a set of packets generated by Nessus13. In Warthog’s “false positive error rate vs. 

number of antibodies” analysis, Williams concludes that as the number of Abs was 

increased, so did the false positive rate (Figure 55(a)). However, from jREMISA 

scenarios one through five, we experience a trend of continuing improvement, from a 

37.4% false positive rate with 371 Abs to 0.10% with 2164 Abs (Figure 55(b)); thus 

giving jREMISA a better false positive rate trend. 

                                                 

13 Nessus: network vulnerability scanner, http://www.nessus.org. 
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(b) 

Figure 55: Warthog vs. jREMISA: false positive rate vs. number of antibodies 
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Other works considered 

While we discovered many algorithms applied to the 1999 MIT-DARPA data set, 

their experimental purpose differed from ours. The following papers were reviewed in 

attempting to compare the author’s algorithm to ours and serve as a future avenue of 

research for jREMISA: 

1. Gonzalez, F., Dasgupta, D., Anomaly Detection Using Real-Valued Negative 

Selection, University of Memphis, Tennessee, 2003; 

2. Lydon, A., Compilation for Intrusion Detection Systems, Master’s thesis, Ohio 

University, 2004; 

3. Li, L., Cai, W., Anomaly Detection using TCP header information, George Mason 

University, 2004; 

4. Soliman, M., El-Helw, A., NIDS using Bloom filters, U. of Waterloo, 2005; 

5. Gaddam, S., Phoha, V., Balagani, K., K-Means+ID3: A Novel Method for 

Supervised Anomaly Detection by Cascading K-Means Clustering and ID3 

Decision Tree Learning Methods, IEEE, Vol. 19, No. 3, March, 2007; 

6. Shapiro, J.M., An Evolutionary Algorithm to Generate Ellipsoid Detectors for 

Negative Selection, Air Force Institute of Technology Master’s Thesis, March 

2005 [Shapiro05]. 

5.5 Summary 

The experiments discussed in this chapter have satisfied the established 

hypothesis objectives presented in Chapter 1. Section 5.2 indicates the validation of the 

REALGO and MISA Java replicas based on the first hypothesis objective. We were able 
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to build jREMISA, using these replicas as the software foundation. Section 5.3 validated 

the second and third hypothesis objectives of achieving “high classification rates” and 

discovering a discrete pattern range of optimally known Ab affinity threshold. In 

addition, jREMISA unexpectedly achieved 0% false classification for LL attacks 7, 22, 

26 and 29, ranging between one and 10401 packets. Our fourth hypothesis objective of 

distributed, cooperative communication was also validated based on jREMISA behavior 

reported. Section 5.4 compared our results to those of another algorithm applied to the 

same data set day, showing jREMISA to be more effective in one area, defining the 

algorithm as “useful” [Garrett05]. 

These validated objectives conclude that jREMISA is not only a successful proof-

of-concept but a useful ID evaluation tool in the context it provides unique features 

conjectured not duplicated by all other algorithms and effective in that it was shown to 

have better results than another algorithm against the same benchmark data set. While not 

yet production-grade, this software is left for continued development based on 

suggestions in Section 6.3. The next Chapter provides conclusions to our hypothesis 

objectives and suggestions for continued avenues of research. 
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VI. Conclusions and Future Work 

 

The impetus for this research stemmed from the limitations imposed by today’s 

predominantly-employed signature-based IDSs applied to the ID domain. Given the 

strengths of MOEAs and the cutting-edge research of AIS application to the ID domain, 

we successfully engineered a useful proof-of-concept application with a human 

immunological-inspired approach, utilizing evolutionary search techniques applied to the 

ID problem. The jREMISA MOP model of protocol-specific Ab populations computed 

against proven, integrated evolutionary operators from REALGO and MISA introduces a 

new way of accurately classifying self from non-self and responding appropriately. This 

chapter reflects on the conclusions drawn from previous chapters, leading to the 

validation of the several objectives that culminate our hypothesis. 

6.1 Hypothesis Conclusion 

This research effort set out to develop a proof-of-concept AIS-inspired MOEA 

applied to the ID domain. Rather than start from scratch, we wisely discovered two 

existing AIS algorithms—REALGO and MISA—and used them as the foundation for 

building jREMISA. Incorporating multiobjectivity and given a ID data set, we defined 

four measurable objectives based on our algorithm’s evaluation of the data set to 

determine if jREMISA is a useful ID domain tool. Based on the results of Chapter 5, we 

indicate whether our objectives are validated: 

1. VALIDATE THE MIGRATION OF EXISTING C-BASED AIS 

ALGORITHMS INTO JAVA-BASED EQUIVALENTS. This objective 
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requires duplicate output of the Java implementation that the original C code 

produced. Section 5.2 showed that jREALGO slightly exceeded the fitness values 

of REALGO against Yao and Liu’s test function. In addition, jMISA exhibits a 

nearly identical known Pareto Front as MISA, with  jMISA possessing the 

solution points closest to the MISA’s true Pareto Front, per Euclidian distance 

calculations. Based on these two results, we have met this objective and can use 

the Java equivalents as the foundation for building jREMISA; 

2. ATTAIN THE HIGHEST CORRECT CLASSIFICATION RATE KNOWN 

FOR THIS PROOF-OF-CONCEPT ALGORITHM. Section 5.3 presents 

jREMISA evaluation of each day of the MIT-DARPA 1999 week-two insider 

attack data set. The results correctly reflected self classification (in the 39% 

affinity threshold range) between 83.37% and 85.45% and non-self classification 

between 96.57% and 99.90%. In addition, all jREMISA detectors exhibited a 0% 

false positive rate for non-self event sequences that composed four attacks: 

a. LL attack 7, “ps attack,” 7 non-consecutive packets, implying jREMISA is 

adept at detecting an irregular FTP session; 

b. LL attack 22, “crashiis”, 4 non-consecutive packets, implying jREMISA is 

adept at detecting malformed packets for crashing Microsoft web servers; 

c. LL attack 26, “neptune”, 10406 non-consecutive packets, implying 

jREMISA is adept at detecting a TCP-SYN flood DoS attack; 

d. LL attack 29, “land”, 1 packet, on two occasions, implying jREMISA is 

adept at detecting a packet crafted to have the same sender and receiver. 
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Based on these results and the corollary that jREMISA was shown to be more 

effective in at least one test over another algorithm, we have met this objective’s 

classification requirement; 

3. IDENTIFY A KNOWN OPTIMAL DETECTOR HYPERVOLUME. Section 

5.3.2’s Figure 50(a-o) experimentally indicate that at least 73% of the time, Abs 

concentrate and form their Pareto Front when their hypervolume is between 39-

44%, for all populations. This signifies a consistent pattern of what a desired Ab 

hypervolume should be in the tradeoff of its fitness score when choosing a 

solution Ab point for future ID domain employment. Because of these results, we 

have achieved this objective’s requirement; 

4. VALIDATE AIS COOPERATIVE COMMUNICATION WITHIN A 

DISTRIBUTED ENVIRONMENT. Section 5.3.3, Figure 52 depicts a snapshot 

of a jREMISA working cooperatively in evaluating the Thursday attack data set. 

The message console clearly shows the multiple broadcasting of newly discovered 

nondominated Abs and the receipt, evaluation and subsequent rejection of a 

broadcasted Ab from another jREMISA. As a corollary, the two-jREMISA 

distributed implementation had the highest correct self classification rate of all 

tests. Based on these results, we achieve this objective’s cooperative 

communication requirement. 

Because all four objectives were met, we declare our hypothesis validated and algorithm 

useful. 
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6.2 Conjectures Based on this Research 

In addition to this research’s original hypothesis of validating an AIS-inspired 

MOEA, we submit two original conjectures and discussion of each: 

1. a proposed purpose and modeling of the innate immune system; 

2. the utility of IP protocol-segregated Ab populations. 

6.2.1 Modeling the Innate Immune System 

As introduced in Section 2.2, the BIS is composed of the innate and adaptive 

immune systems. Section 2.3 introduced the AIS as solely the computational model of the 

latter half of the BIS. 

However, we conjecture the innate BIS serves a purpose for being 

computationally modeled. To date, AIS research applied to the ID domain has 

traditionally focused on packet headers (context) and not payloads (content). However, 

HTTP protocol payloads are desirable over other protocols for their ability to store their 

entire payload within one packet. For example, when logging into a server via telnet, 

each packet’s payload consists of one alphanumeric press from the keyboard. It can be 

quite difficult to discern a username or password for two key reasons: (i) the possibility 

the user may have hit the backspace key a number of times; and (ii) packets being 

received at arbitrary times, in an arbitrary order (assuming all packets were received). 

HTTP payloads, on the other hand, are not passed until the user presses the “Enter” key, 

passing the entire Uniform Resource Locator (URL) string into the packet. HTTP 

exploits are currently one of the most popular methods of vulnerability discovery and 
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exploitation (e.g., phishing14). Lippmann supports the inspection of packet payloads in 

his recommendations for future IDS enhancements, specifically citing the inspection of 

both packet contents and context [Lippmann00]. 

Therefore, we believe scanning HTTP packet payloads based on a database of a 

priori HTTP exploit strings constitutes an innate BIS and may be deterministically 

modeled as such. By integrating both the innate and adaptive BIS into one algorithm, we 

can complete a consistent modeling of the BIS. 

6.2.2 Protocol-Based Antibody Populations 

To date, EAs have employed a single Ab population. Per the affinity threshold, a 

simple distance measure between an Ab and Ag to determine self or non-self is what we 

term first-order pattern matching. ID data sets are more complex in that packets of 

differing protocol have a disparate number and size of payload fields. Therefore, 

jREMISA’s initial population is a set of three protocol-specific populations: a TCP, UDP 

and ICMP pool. The user’s selected data structure (IP, TCP, UDP and ICMP fields 

selected) determines the size of the search landscape and the length of the Ab. This 

improves pattern matching because incoming Ags are compared only to an Ab of their 

respective protocol, allowing “apple-to-apple” comparison of header fields. This also 

improves efficiency because only that subset of the entire primary population is being 

                                                 

14 Defined by PC Magazine 
(http://www.pcmag.com/encyclopedia_term/0,2542,t=phishing&i=49176,00.asp) as “a scam to steal 
valuable information such as credit card and social security numbers, user IDs and passwords.” E.g., an 
official-looking e-mail is sent to potential victims pretending to be from their ISP, bank, or retail 
establishment, with the expectation some percentage of recipients respond accurately. 
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evaluated. Matching the Ag to the respective Ab population in this IP protocol-specific 

manner is what we term second-order pattern matching. 

6.3 jREMISA: “The Way Ahead” 

Our software, motivated by the hypotheses of this research, is developed along a 

two-prong approach: 

1. code the foundation from existing AIS algorithms; 

2. enhance with innovative, distributed and EC-inspired ideas. 

All of our ideas were successfully implemented, as Chapter 5 attests. As this software 

was developed with the “follow-on developer” in mind, by implementing good software 

programming practices, we propose the following future enhancements to jREMISA: 

1. implement an innate BIS based on known HTTP exploit strings (as explained in 

Section 6.2.1); 

2. continue developing the evaluation capability started for the KDD Cup 99 data set 

(see Appendix C); 

3. further develop jREMISA’s tcpdump decoder to facilitate protocols beyond TCP, 

UDP and ICMP. This recommendation is supported by Lippmann who cited that 

one reason many attacks were missed was due to the lack of IDS protocol support 

(e.g., ARP, SNMP, DNS, etc.) [Lippmann00]. 

Continuing to develop manageable software requires disciplined software engineering 

practices. As such, we suggest the motivated reader review our thoughts on software 

engineering principles (Appendix E) and maintaining jREMISA as open-source software 

(Appendix F). 
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 It is stressed that the results of our experiments would not have been as high if we 

had not employed the LL truth set to guide our detectors. However, because this was a 

proof-of-concept algorithm against the ID domain, a guide was needed to measure 

reaction by the detectors. Further, our classification rates are currently far from 

acceptable for real-world implementation of jREMISA. For example, consider today’s 

Air Force-level architecture comprised of 9.6 Gbps bandwidth links monitored by a team 

of three analysts who can realistically monitor about 240 false positives, each, before 

being overwhelmed, in a 24 hour period. A single 9.6 Gbps link delivers 8.2944 x 1014 

bits of information per day. Dividing that into the maximum packet size of 16 KB yields 

6,328,130,000 packets per day. Dividing the number of false positives by this number of 

packets results in an acceptable error rate of 1.138 x 10-7 [Williams07]. 

We highly encourage the reader to inquire about acquisition of jREMISA and its 

prepared data sets. Its intuitive GUI and flexibility of parameters settings allow for a 

combinatoric number of user-defined experiments tailored to custom search landscape 

size. Further, its well-commented code and implementation of multiple software design 

patterns allow for a minimal learning curve in altering jREMISA’s programming. 

6.4 Continued Research Need 

On January 1, 2007, a story was published by the U.S. Department of Homeland 

Security (DHS) announcing a $10.2 million dollar grant to four universities for their 

research into electronic terrorist activity detection [CSO07]. These universities intend to 

develop algorithms to find patterns and relationships in news stories and blogs utilizing 

mathematical tools such graph theory, dynamic data analysis, optimization, “machine 
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learning” and statistical analysis. This goal and methodology is synonymous to the goal 

of this research. Further, their intent to study information content is indicative of the need 

to consider network traffic payloads and supports our conjecture of modeling the innate 

BIS for HTTP payload examination. This research grant symbolizes the need for new, 

large-scale ID data sets and the upgrade of today’s very few and aging ID data sets. 

6.4.1 Suitability of the MIT-DARPA ID data sets 

This research utilized the LL-procured (1999 insider) ID data set because it 

currently constitutes the largest publicly available benchmark of network traffic 

[Mahoney03]. However, this was also the only ID data set evaluated because of the 

general lack of public domain data sets; a consequence of proprietary data privacy 

concerns combined with the difficulty level in accurately simulating Internet traffic 

[Mahoney03]. 

To make matters worse, the LL data sets have been criticized from many angles 

as an overall inaccurate ID domain model. McHugh, in his assessment of the complete 

LL corpus, declares the following fallacies [McHugh00]: 

1. questionable traffic collection methodology; 

2. attack taxonomy; 

3. lack of statistical evidence validating real-world Air Force network traffic; 

4. low traffic rates; 

5. relative uniform distribution of the four major attack categories; 

6. skewed distribution of the victim hosts; 

7. overall flat network topology. 
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To evaluate these claimed simulation artifacts, Mahoney and Chan developed a simplistic 

anomaly detection system they claimed “could not possibly work” [Mahoney03]. Their 

system was trained on the first week and evaluated against the second week of network 

traffic—the same as jREMISA. Their results indicated a 45% attack detection rate (79 of 

177 attacks), with 43 false alarms, making them competitive with the top systems 

involved in the original evaluation. 

 These results appear to give merit to McHugh’s claims of the LL corpus, in which 

he does not accompany answers with the many questions he raised [Mahoney03]. 

Mahoney’s recommendation to accurately modeling an ID data set is to simply add real 

traffic to the simulation. Not withstanding privacy concerns, the benefits of a real-traffic 

data set include [Mahoney03]: 

1. eliminating the need to simulate traffic and label attacks; 

2. factoring in the IP protocols introduced since 1999; 

3. a greater volume of encrypted traffic, allowing for a more accurate modeling of 

today’s network traffic composition. 

Mahoney and Chan researched other ID data sets, such as Internet Traffic 

Archive15, but found it unsuitable for its lack of application payload. They conclude by 

suggesting the need for a new benchmark and, because of the proliferation of application-

payload encrypted traffic, migrate anomaly detection systems from NIDS, “on-the-wire,” 

                                                 

15 The Internet Traffic Archive is a moderated repository to support widespread access to traces of Internet 
network traffic, http://ita.ee.lbl.gov. 
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to HIDS, which have the ability to evaluate the decrypted payload, after its delivery (see 

Section 2.1.1). 

6.4.2 “Cyber Storm”: the next ID data set? 

In February of 2006, InfoWorld.com reported that the DHS had just completed, 

“the first full-scale government-led cyber attack simulation” [InfoWorld06]. A public 

report of the results and lessons learned was to be released mid-2006, said Andy Purdy, 

acting director of the DHS National Cyber Security Division. DHS called this simulation 

a “sophisticated cyber attack, involving 115 organizations in the U.S., Canada, the U.K., 

Australia and New Zealand,” in addition to private companies such as Microsoft, 

VeriSign Inc. and Symantec Corp. Participating governmental agencies included the 

DoD, Department of Justice, the U.S. State Department and the National Security 

Agency. In February of 2007, InfoWorld.com reported that the DHS is planning “Cyber 

Storm 2” to be conducted in March of 2008 [InfoWorld07]. It’s billed to include a greater 

number of participants than the first, particularly with respect to number of international 

participants. 

In consideration of the aging ID data sets of today, this author conjectures the 

opportunity may exist to become involved in this exercise to determine its potential value 

as the next real-world ID data set. 

6.5 Summary 

This Chapter began with a review of the objectives needed to be met in order to 

validate our hypothesis and the Chapter 5 experiments that met the hypothesis’ 
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objectives. Following, we contribute ideas to unexplored areas of the AIS field. We 

conclude with the future for jREMISA and its continued research need for helping solve 

the ID problem. 

Overall, this research effort validated our hypothesis that an AIS-inspired MOEA, 

composed of segregated populations and proven EA operators of past AIS algorithms, is 

useful and effective against the ID problem domain. Furthermore, we believe this 

software to be the first AIS to apply multiobjectivity to the ID domain; specifically, the 

MIT-DARPA data set. It is our hope that this proof-of-concept software be further 

investigated, with the possibility it may bring us yet closer to solving the ID problem. 
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Appendix A: ID-Domain Stochastic Search Algorithms  

 

This appendix further elaborates on Section 2.4.2’s introduction to types of 

stochastic search algorithms employed in the ID domain. While not utilized in our 

research because of their inability to conform to jREMISA’s data structure or algorithm, 

it is worth explaining what applications they serve for the purpose of choosing the most 

appropriate one to apply to a particular problem domain. Seven popular stochastic 

algorithms discussed are: 

1. simulated annealing (SA); 

2. tabu search (TS); 

3. genetic algorithm (GA); 

4. evolutionary strategy (ES); 

5. evolutionary programming (EP); 

6. ant colony optimization (ACO). 

A.1 Simulated Annealing (SA) 

Computational SA was developed in 1983 to deal with highly nonlinear and 

combinatorial optimization problems [Busetti03] and to escape local optima 

[Michalewicz04]. The algorithm itself was inspired by the metallurgical annealing 

technique where a controlled heating and cooling process of a material through a 

temperature T is intended to produce a uniform distribution of crystals with the lowest 

possible internal energy.  A controlled T decrease leads to a uniform, crystallized solid 

(stable) state, corresponding to an absolute minimum of energy [DPST06]. Conversely, 
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the rapid lowering of T results in quenching—an amorphous structure (metastable) state 

leading to local minimums of energy. 

Computationally speaking, SA is a strategy to approach a landscape’s globally 

optimum solution with given constraints, traversing its various sub-optimal solutions 

within a neighborhood, beginning at the highest T. This T allows for a search over the 

largest possible area in a stochastic random walk manner. If our initial T and cooling rate 

are optimally chosen, we restrict the number of sub-optimal choices made, stabilizing our 

system and shrinking our neighborhood. As the neighborhood becomes small where T 

finally tends to zero, our algorithm degenerates from stochastic to deterministic because 

only improvements are accepted and, thus, a DFS completes the greedy search for the 

optimum solution. However, if T is rapidly decreased (analogous to quenching), we most 

likely end up in a (amorphous) local minimum. 

As mentioned above, in metallurgy, a quenched material results in an amorphous 

(defective) structure. However, this defect can be overcome by re-heating and cooling, 

again. Synonymously, SAs major advantage over other methods is the ability to escape 

local minima by increasing T. Consider the analogy of a bouncing ball that can bounce 

over mountains, from valley to valley (local minima). At highest (initial) T, the ball can 

bounce to any valley (Random Walk). As it does so, T decreases, resulting in less bounce.  

If T is low enough where the ball cannot bounce out of a valley, T can be increased, 

giving enough bounce for the ball to escape the valley. Algorithm 7 outlines the generic 

SA algorithm. 
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1 procedure simulatedAnnealing 
2 begin 
3 t←0 
4 initialize T 
5 select a current point vcurrent at random 
6 evaluate vcurrent 
7 repeat  
8      repeat  
9           select a new point vnew in the neighborhood of vcurrent 
10           if eval(vcurrent) < eval(vnew) 
11                then vcurrent←vnew 

12                else if random[0,1) < 
( ) ( )new currenteval v eval v

Te
−

 
13                     then vcurrent←vnew 
14           until (termination-condition) 
15           T←g(T,t) 
16           t← t + 1 
17      until (halting-criterion) 
18 end 

Algorithm 7: Basic simulated annealing algorithm [MICHALEWICZ04] 

 

In order to execute SA, the following information is required a priori and problem 

domain-specific [Michalewicz04]: 

1. what defines a solution? 

2. what is the neighborhood makeup of a solution? 

3. what is the cost of a solution? 

4. how is the initial solution determined? 

5. how is the initial temperature T determined? 

6. how is the cooling ratio g(T,t) determined? 

7. what defines the termination condition? 

8. what defines the halting criterion? 
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A.2 Tabu Search (TS) 

Tabu Search, in its purest form, is deterministic. Is it not until the tabu list, for 

remembering last values visited in order not to re-visit them, is included, that it becomes 

stochastic—the implementation method more commonly used. The roots of Tabu Search 

date back to the 1970s. The algorithm, itself, eventually became a refined SA procedure 

in which the introduction of a tabu list in memory maintains visited points, forcing the 

search process to explore only unvisited areas [HTD97]. TS has now become an 

established approximation technique which has been validated to beat many classical 

procedures. TS is essentially deterministic, as opposed to SA, but can be modified to 

include probabilistic elements, making it more nondeterministic [Michalewicz04]. For 

example, as with SA’s T regulator, TS can escape local optima through probabilistic 

control of an aspiration level. Algorithm 8 outlines the generic TS algorithm. 

 

1 procedure tabuSearch 
2 begin 
3 select a current point vcurrent at random 
4 evaluate vcurrent 
5 tabuv ←vcurrent 
6 Repeat 
7      evaluate every point in the neighborhood of vcurrent 
8      select a new point vnew in the neighborhood of vcurrent 
9      if (eval(vcurrent) > eval(vnew))∧ vnew∉ tabuv  then 
10           vcurrent←vnew 
11           tabuv ← tabuv ∪ vcurrent 
12      t = t + 1 
13 until (halting-criterion) 
14 end 

Algorithm 8: Basic tabu search algorithm [MICHALEWICZ04] 
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As TS is modeled after SA, some of the same a priori information is required and 

problem domain-specific [Michalewicz04]: 

1. what defines a solution? 

2. what is the neighborhood makeup of a solution? 

3. what is the cost of a solution? 

4. how is the initial solution determined? 

5. what defines the halting criterion? 

A.3 Genetic Algorithm (GA) 

A GA is a search technique used in computing to find true or approximate 

solutions to optimization and search problems based on Darwin’s “survival of the fittest” 

theory of evolution [Darwin64]. In natural evolution, each species searches for beneficial 

adaptations in an ever-changing environment (domain). As species evolve, these new 

attributes are encoded into the chromosomes of the individual members. While 

information does change via random mutation, the real force behind evolutionary 

development is the exchange of the best chromosomal building blocks between two 

chromosomes, during breeding [CSEP07]. GAs differ from traditional optimizations in 

four respects. They: 

1. manipulate the encoding of the variables vice the variables, themselves; 

2. search from one population to another, verses individual to individual; 

3. use objective function information, not derivatives; 

4. use probabilistic vice deterministic transition rules. 
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The pseudocode for a standard GA is described in Algorithm 9. 

 

1 procedure GA 
2 begin 
3 g := 0;  /* generational counter */ 
4 initialize P(g) 
5 evaluate P(g)  /* compute fitness values */  
6 while (ι (P(g)) ≠ true) do 
7    g := g + 1; 
8    select: P(g) from P(g-1) 
9    crossover: P’(g) 
10    mutate: P’(g) 
11    evaluate: P’(g) 
12    P := survivors(P,P’,g) 
13 od 
14 end 

Algorithm 9: Genetic Algorithm pseudocode 

A.4 Evolutionary Strategy (ES) 

ES are similar to GAs in that they, too, simulate evolution. The difference arises 

in their origin of application. While GAs were designed to solve discrete or integer 

optimization problems, ES were first applied to continuous parameter optimization 

problems associated with laboratory experiments (e.g., they use real-vector coding 

representation) [CSEP07]. Recombination involves taking the mean of each element 

(allele) of the parent vector. Because jREMISA employed a bit string data structure, ES 

did not conform to our work. ES and GAs are just two algorithms in the EAs collective. 

A.5 Evolutionary Programming (EP) 

 EP is similar to the GA idea but its data structure is not restricted to the 

chromosome [Nath07]. Solutions can have any data structure with various mutation 

methodologies possible based on the particular solution. Similar to jREMISA, 
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recombination tends not to play a role. As jREMISA was restricted to a fixed 

chromosome, the EP did not meet our requirements. 

A.6 Ant Colony Optimization (ACO) 

ACO is a paradigm for designing metaheuristic algorithms to solve combinatorial 

optimization problems based on the collective foraging behavior of ants. The first ACO 

algorithm was introduced in 1991 [DMC91] with the essential trait being the combination 

of a priori information about the structure of a promising solution with a posteriori 

information about the structure of previously obtained good solutions [MGL04]. ACOs 

drive a low-level, constructive solution in a population framework that randomizes the 

construction in a Monte Carlo16 way. A Monte Carlo combination of different solutions 

elements is also suggested by GAs but in the case of ACOs, the probability distribution is 

explicitly defined by the previously obtained solutions. Initial ACO applications included 

[LamontACO06]: 

1. the traveling salesman problem (TSP); 

2. quadratic assignment problem; 

3. graph colouring; 

4. job-shop scheduling; 

5. sequential ordering; 

6. vehicle routing. 

                                                 

16 Monte Carlo methods involve simulations dealing with stochastic events; they employ a purely random 
search where any selected trial solution is fully independent of any previous choice and its outcome. The 
current “best” solution and associated decision variables are stored as a comparator [CVL02]. 
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In the real world, ants initially wander randomly and upon finding food, return to 

the colony while laying down pheromone that temporarily enables trail remembrance. 

Hence, if other ants find such a path, they likely will follow it vice continue wandering 

randomly. Over time, however, the pheromone trail evaporates, reducing its attractive 

strength. However, as more ants traverse this path, the more pheromone is laid, providing 

a stronger attraction to that particular path. This evaporation process has the advantage of 

avoiding convergence to a locally optimal solution. Thus, when one ant finds a good 

(pheromone-strong) path from the colony to the food source (objective), other ants are 

more likely to follow that path, eventually resulting in a single, optimal path. 

ACOs have the advantage over SA and GA when the problem domain graph (e.g., 

TSP) changes dynamically. When this happens, the ant colony can be run continuously 

and adapt to changes in real-time. Figure 56 depicts an example of ants finding more food 

(F) below the barrier than above it, resulting in a more optimal pheromone trail 

developing below the barrier than above. 

 

Figure 56: Example of ACO given a preponderance of food at the bottom trail
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Appendix B: MIT-DARPA 1999 Week 2 Truth Set Mapping 

 

This appendix provides the mapping of the MIT-DARPA 1999 week-two LL 

truth set’s high-level attack identification to what we believe to be the exact packet 

numbers within the second week’s five data set files. In order for jREMISA to determine 

whether its detectors have correctly classified an incoming data set packet as self or non-

self, it must be able to reference a truth table for every packet identification number. The 

detections list file provided by the LL website [MITDARPA99] provides enough high-

level detail of each attack to search for it at the packet level: date, start time, destination 

machine, and attack technique. To discover the packet sequence and duration of an 

attack, we used Ethereal v.0.99, as shown in Figure 57. 

 

 

Figure 57: Ethereal analysis of the 1999 week-two Monday clean insider data set 
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The methodology of combining the MIT-DARPA 1999 week-two insider data set 

with LL’s truth set to extract an attack sequence of packets was as follows: 

1. acquire and open one day’s data set in Ethereal17; 

2. apply the Ethereal filter, “ip.proto == 1 || ip.proto == 17 || ip.proto == 6” (see 

Section 4.3.1); 

3. save as “<day>_filtered.cap”; 

4. map LL’s “start time” in seconds to the Ethereal “seconds” column to verify 

destination IP (victim) and payload match LL truth set (where a day’s live play 

ranges an average of 22 hours, beginning at 0800, per LL); 

5. further filter by source IP (attacker), destination IP (victim) and IP protocol (as 

above) to bound the attack to discover start and end packet number and time 

duration; 

6. use jREMISA to extract each packet number into a XML file, titled by the LL-

designated attack number, giving it the same filter parameters (because this author 

is not manually typing in 10,000 packet ID numbers). 

Upon doing this for as many of the packet header-focused attacks as possible (e.g., 

“portsweep”), jREMISA loads the appropriate XML files into Java TreeMaps that 

perform O(log n) search time for determining the truth of each Ab’s declaration. 

                                                 

17 In May, 2006, the Ethereal project changed ownership to the open-source project, Wireshark 
(http://www.wireshark.org). Wireshark was unable to load data sets of our abnormally large size, hence our 
research stayed with the last stable release of Ethereal, v0.99. 
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Our declarations and commentary of the attack events that follow is based on 

empirical interpretation is what we believe to constitute the range of the attack from start 

to end and may not be 100% accurate. We are fairly sure of a majority accuracy, as this 

Cisco-Certified Network Associate (CCNA)-certified author has a decade of training and 

experience in network packet analysis and executing various USAF-sanctioned 

vulnerability scans and network-based exploits (as a former 92d Aggressor18 Blue and 

Red Team Chief). The following tables provide the low-level mapping from the LL 

detections list file of 16 successfully extracted, context-based attacks. 

 

MONDAY, 03/08/99 
1,753,377 packets total 

1,737,455 feasible (TCP/UDP/ICMP = 99.09%) 
LL Truth Set Website 

ID Date Start Destination Name 
03/08/1999 08:50:15 zeno.eyrie.af.mil pod 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

2 

206.229.221.82 > 
zeno.eyrie.af.mil 

3011.585624 – 
3011.882456 

104504 – 104745 
(241 consecutive packets) 

ICMP (fragmented) 

COMMENTS 
1. Ethereal filter: ip.src_host matches "206.229.221.82" && ip.dst_host matches 

"zeno.eyrie.af.mil" && ip.proto == 1 (ICMP). 
 
 

                                                 

18 92d Information Warfare Aggressor Squadron, Air Force Information Warfare Center, Lackland AFB, 
Texas. 
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LL Truth Set Website 
ID Date Start Destination Name 

03/08/1999 15:57:15 pascal.eyrie.af.mil 
(172.16.112.50) 

land 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

5 

pascal to pascal 28626.76379 Packet #1412753 TCP 
COMMENTS 

1. crafted DoS packet to make victim’s address source, as well; 
2. LL claims this is a UDP packet but Ethereal reports protocol as TCP. 

 
 

LL Truth Set Website 
ID Date Start Destination Name 

03/08/1999 19:09:17 pascal.eyrie.af.mil ps attack 
Ethereal-Mapped Interpretation 

From-To Duration (s) Packets Protocol 

7 

mars.avocado.net > 
pascal.eyrie.af.mil 

40146.26430 – 
40158.01769 

695119-
695122,695124,695125, 

695132, 695133 

TCP-FTP 

COMMENTS 
1. pascal (victim) FTP-requests “psexp.sh.uu” then FINs the connection. 

 
 

 
TUESDAY, 03/09/99 

1,585,120 packets total 
1,571,748 feasible (TCP/UDP/ICMP = 99.15%) 

LL Truth Set Website 
ID Date Start Destination Name 

03/09/1999 08:44:17 marx.eyrie.af.mil 
(153.37.134.17) 

portsweep 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

8 

153.37.134.17 > 
www.eyrie.af.mil 

2653.473586 – 
4269.591726 

49201 – 97318 
(1030 non-consecutive packets) 

TCP – FIN flag 

COMMENTS 
1. LL truth set says DST_IP = “marx.eyrie.af.mil” but Ethereal reports the FIN flag 

flood from marx, attacking www.eyrie.af.mil; 
2. destination ports 1-1000 swept; 
3. Ethereal filter: ip.src_host matches "153.37.134.17" && ip.dst_host matches 

"www.eyrie.af.mil" && ip.proto == 6 (TCP). 
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LL Truth Set Website 
ID Date Start Destination Name 

03/09/1999 10:06:43 marx.eyrie.af.mil 
(153.37.134.17) 

back 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

10 

172.16.118.70 > 
www.eyrie.af.mil 

7649.806550 – 
7770.168467 

185125 – 187986 
(522 non-consecutive packets) 

TCP-HTTP 

COMMENTS 
1. Ethereal filter: ip.src_host matches "172.16.118.70" && ip.dst_host matches 

"www.eyrie.af.mil" && ip.proto == 6 (TCP); 
2. packet match entails many connections with backslash storms; 
3. while LL labels this attack against marx, Ethereal reported it to be against 

www.eyrie.af.mil. 
 
 
 

WEDNESDAY, 03/10/99 
1,011,149 packets total 

995,235 feasible (TCP/UDP/ICMP = 98.43%) 
LL Truth Set Website 

ID Date Start Destination Name 
03/10/1999 12:02:13 marx.eyrie.af.mil 

(153.37.134.17) 
satan 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

17 

204.97.153.43 > 
www.eyrie.af.mil 

14537.628371 – 
14672.655720 

382801 – 410611 
(10504 non-consecutive packets) 

TCP – SYN flag 

COMMENTS 
1. Ethereal filter: ip.src_host matches "204.97.153.43" && ip.dst_host matches 

"www.eyrie.af.mil" && ip.proto == 6 (TCP); 
2. looks like a SYN-based port sweep; Ethereal reports victim as 

“www.eyrie.af.mil” vs. LL’s “marx.eyrie.af.mil”; 
3. SRC_PORT +1, each time. 
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LL Truth Set Website 
ID Date Start Destination Name 

03/10/1999 13:44:18 pascal.eyrie.af.mil mailbomb 
Ethereal-Mapped Interpretation 

From-To Duration (s) Packets Protocol 

18 

208.254.251.132 > 
pascal 

20650.472698 – 
21246.253089 

555295-597287 
(5004 non-consecutive packets) 

TCP-SMTP 

COMMENTS 
1. Ethereal filter: ip.src_host matches "208.254.251.132" && ip.dst_host matches 

"pascal.eyrie.af.mil" && ip.proto == 6 (TCP); 
2. 208.254.251.132 logs in asdfg@hotlips.com, sends a large-body email to one user 

@pascal.eyrie.af.mil and logs out. This occurs 500 times. 
 
 

LL Truth Set Website 
ID Date Start Destination Name 

03/10/1999 23:56:14 hume.eyrie.af.mil crashiis 
Ethereal-Mapped Interpretation 

From-To Duration (s) Packets Protocol 

22 

205.180.112.36 > 
hume 

57359.536276 – 
57366.408634 

981138, 
981140,981141,981145 

TCP-HTTP 

COMMENTS 
1. as the attack describes—a single malformed HTTP packet (#981141) is sent to 

hume (we include the others for connection setup and teardown from attacker). 
 
 
 

THURSDAY, 03/11/99 
1,563,069 packets total 

1,547,709 feasible (TCP/UDP/ICMP = 99.02%) 
LL Truth Set Website 

ID Date Start Destination Name 
03/11/1999 08:04:17 hume.eyrie.af.mil crashiis 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

23 

linux2.eyrie.af.mil > 
hume 

240.816330 – 
247.625176 

3450,3452,3453,3458 TCP-HTTP 

COMMENTS 
1. as the attack describes—a single malformed HTTP packet (#3453) is sent to hume 

(I include the others for connection setup and teardown from attacker for 
patternizing attacker’s source location). 
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LL Truth Set Website 

ID Date Start Destination Name 
03/11/1999 10:50:11 marx.eyrie.af.mil 

(153.37.134.17) 
satan 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

25 

linux9.eyrie.af.mil > 
www.eyrie.af.mil 

5589.224812 – 
5591.868966 

136873 – 157280 
(10056 non-consecutive pkts) 

TCP 

COMMENTS 
1. Ethereal filter: ip.src_host matches "linux9.eyrie.af.mil" && ip.dst_host matches 

"www.eyrie.af.mil" && ip.proto == 6 (TCP); 
2. while labeled “satan,” the pattern is “portsweep” near this Start time; 
3. ethereal reports destination as “www.eyrie.af.mil”, not marx; 
4. SRC_PORT increments src port +1, each time, for DST_PORTs 1-9999. 

 
 

LL Truth Set Website 
ID Date Start Destination Name 

03/11/1999 11:04:16 pigeon.eyrie.af.mil neptune 
Ethereal-Mapped Interpretation 

From-To Duration (s) Packets Protocol 

26 

209.117.157.183 > 
pigeon 

11030.776696 – 
11235.663506 

381781-412373 
(10401 non-consecutive 

packets) 

TCP – SYN flag 

COMMENTS 
1. Ethereal filter: ip.src_host matches "209.117.157.183" && ip.dst_host matches 

"pigeon.eyrie.af.mil" && ip.proto == 6 (TCP); 
2. SYN flood: 10 packets each for DST_PORT 1 through 1024. 

 
LL Truth Set Website 

ID Date Start Destination Name 
03/11/1999 15:47:15 pascal.eyrie.af.mil land 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

29 

pascal > pascal 28006.155539 Packet #1121478 TCP-SMTP 
COMMENTS 

1. as stated in the attack description, a single TCP SYN flag packet was sent where 
both SRC_PORT and DST_PORT = 25 (SMTP). 
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FRIDAY, 03/12/99 
1,362,422 packets total 

1,347,393 feasible (TCP/UDP/ICMP = 98.90%) 
LL Truth Set Website 

ID Date Start Destination Name 
03/12/1999 09:18:15 duck.eyrie.af.mil pod 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

35 

dialup77.glink.net.hk > 
duck.eyrie.af.mil 

4690.999774 – 
4691.534620 

90303-90737 
(435 consecutive packets) 

ICMP (fragmented) 

COMMENTS 
1. as the attack describes—a series of contiguous, fragmented ICMP packets; 
2. Ethereal filter: ip.src_host matches "dialup77.glink.net.hk" && ip.dst_host 

matches "duck.eyrie.af.mil" && ip.proto == 1. 
 
 

LL Truth Set Website 
ID Date Start Destination Name 

03/12/1999 11:20:15 marx.eyrie.af.mil 
(153.37.134.17) 

neptune 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

36 

204.97.153.43 > 
www.eyrie.af.mil 

12010.065037 – 
12214.803999 

314201-342487 
(10381 non-consecutive packets) 

TCP – SYN flag 

COMMENTS 
1. as the attack describes, this is a SYN flood DoS, however, at this start time, the 

victim is www.eyrie.af.mil, not marx; 
2. Ethereal filter: ip.src_host matches "204.97.153.43" && ip.dst_host matches 

"www.eyrie.af.mil" && ip.proto == 6. 
 
 
 
 

LL Truth Set Website 
ID Date Start Destination Name 

03/12/1999 12:40:12 hume.eyrie.af.mil crashiis 
Ethereal-Mapped Interpretation 

From-To Duration (s) Packets Protocol 

37 

alpha.apple.edu > 
hume 

16808.70902 – 
16815.70694 

536909,536911, 
536912,536949 

TCP-HTTP 

COMMENTS 
1. packet #536912 is the malformed HTTP packet; the rest is set-up and teardown 

records by sender, only. 
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LL Truth Set Website 

ID Date Start Destination Name 
03/12/1999 17:13:10 pascal.eyrie.af.mil portsweep 

Ethereal-Mapped Interpretation 
From-To Duration (s) Packets Protocol 

42 

209.167.99.71 > 
pascal.eyrie.af.mil 

33181.082026 – 
33904.161875 

#1171914-1208354 
(5058 non-consecutive packets) 

TCP – SYN flag 

COMMENTS 
1. Ethereal filter: ip.src_host matches "209.167.99.71" && ip.dst_host matches 

"pascal.eyrie.af.mil" && ip.proto == 6. 
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Appendix C: KDD Cup 99 Data Set 

 

This appendix further explains the technical details and requirements of 

facilitating the KDD Cup 99 data set into jREMISA. The 1999 KDD Cup data set, used 

for The Third International KDD Mining Tools Competition, was held in conjunction 

with KDD-99 Fifth International Conference on Knowledge Discovery and Data Mining. 

Built upon the 1998 MIT-DARPA data sets [KDD99, Mahoney03], the competition task 

was to build a network intrusion detector—a predictive model capable of distinguishing 

between “bad'' connections, called intrusions or attacks, and “good'' normal connections. 

This database contains a standard set of data to be audited, including a wide variety of 

intrusions simulated in a military network environment. We desire to evaluate our 

algorithm against this data set, as well. However, due to lack of some basic data structure 

information, we were unable to. 

While the MIT-DARPA data sets are binary network traffic files, each KDD Cup 

99 connection record (clear-text line) is a 42-dimension clear-text array of subjective 

parameters based on basic features of a TCP connection and content features within a 

connection and traffic features within the network. The first 41 dimensions are the record 

composition, with the last dimension declaring whether it is a clean or attack record. 

While we possessed the data set and truth set, we were unable to acquire each 

dimension’s upper and lower bounds and discrete value definitions (i.e., some undefined 

values for Gene 4 include, “SF”, “S1”, “REJ”, etc.). Regardless, jREMISA includes some 

coded methods that prepare reading in of a KDD Cup 99 data set and selection of which 

fields (genes) of the record should be evaluated. Table 9 depicts our chromosomal 
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representation of a KDD Cup 99 connection record. Because we do not know the Value 

Type’s boundaries, we could only guess the bit lengths in the last two columns of Table 9 

that would compose the Ag chromosome. 

 

Dim 
(gene) 

Field Purpose Value Type Start 
Loc19 

Gene 
Bits† 

Basic Features of Individual TCP Connections 
1 duration length (number of seconds) of 

the connection  
continuous 0 16 

2 protocol_type type of the protocol, e.g. tcp, 
udp, etc.; author constraint: 
“TCP”, “UDP”, “ICMP” only 

discrete 16 2 

3 service network service on the 
destination, e.g., http, telnet, etc.  

discrete 18 6 

4 flag normal or error status of the 
connection  

discrete 24 8 

5 src_bytes number of data bytes from 
source to destination  

continuous 32 8 

6 dst_bytes number of data bytes from 
destination to source  

continuous 40 8 

7 land 1 if connection is from/to the 
same host/port; 0 otherwise  

discrete 48 1 

8 wrong_fragment number of ``wrong'' fragments  continuous 49 6 
9 urgent number of urgent packets  continuous 55 6 

Content Features Within a Connection Suggested by Domain Knowledge 
10 hot number of ``hot'' indicators continuous 61 8 
11 num_failed_logins number of failed login attempts  continuous 69 6 
12 logged_in 1 if successfully logged in; 0 

otherwise  
discrete 75 1 

13 num_compromised number of ``compromised'' 
conditions  

continuous 76 6 

14 root_shell 1 if root shell is obtained; 0 
otherwise 

discrete 82 1 

15 su_attempted 1 if ``su root'' command 
attempted; 0 otherwise 

discrete 83 1 

16 num_root number of ``root'' accesses  continuous 84 6 
17 num_file_creations number of file creation 

operations  
continuous 90 6 

18 num_shells number of shell prompts  continuous 96 8 
19 num_access_files number of operations on access 

control files  
continuous 104 8 

20 num_outbound_cmds number of outbound commands 
in an ftp session  

continuous 112 8 

21 is_hot_login 1 if the login belongs to the discrete 120 1 

                                                 

19 This field added by this author, in development of the Ab and Ag data structures. 
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``hot'' list; 0 otherwise  
22 is_guest_login 1 if the login is a ``guest'' login; 

0 otherwise  
discrete 121 1 

Traffic Features Computed Using a Two-Second Time Window 
23 count number of connections to the 

same host as the current 
connection in the past two 
seconds  

continuous 122 16 

24 srv_count number of connections to the 
same service as the current 
connection in the past two 
seconds (same-host connection) 

continuous 138 16 

25 serror_rate % of connections that have 
``SYN'' errors  (same-host 
connection) 

continuous 154 7 

26 srv_serror_rate % of connections that have 
``SYN'' errors (same-service 
connection) 

continuous 161 7 

27 rerror_rate % of connections that have 
``REJ'' errors (same-host 
connection) 

continuous 168 7 

28 srv_rerror_rate % of connections that have 
``REJ'' errors (same-service 
connection) 

continuous 175 7 

29 same_srv_rate % of connections to the same 
service (same-host connection) 

continuous 182 7 

30 diff_srv_rate % of connections to different 
services (same-host connection) 

continuous 189 7 

31 srv_diff_host_rate % of connections to different 
hosts (same-service connection) 

continuous 196 7 

32 dst_host_count  continuous 203 16 
33 dst_host_srv_count  continuous 219 16 
34 dst_host_same_srv_rate  continuous 235 7 
35 dst_host_diff_srv_rate  continuous 242 7 
36 dst_host_same_src_port_r

ate 
 continuous 249 7 

37 dst_host_srv_diff_host_ra
te 

 continuous 256 7 

38 dst_host_serror_rate  continuous 263 7 
39 dst_host_srv_serror_rate  continuous 270 7 
40 dst_host_rerror_rate  continuous 277 7 
41 dst_host_srv_rerror_rate  continuous 284 7 
42 truth label: “normal” or 

<attackName> 
Not part of data structure; testing 
purpose only 
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Table 9: KDD Cup 99 data structure [adapted from KDD99] 
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Appendix D: jREMISA User Manual and Source Code 

 

This appendix is the usage guide for the jREMISA software. Program 

requirements, special instructions and explanation of the user interface are provided here. 

Complementary to this guide are descriptions next to each GUI input field, to minimize 

referencing this manual. Section D.1 is the “Quick Start Guide” for those who wish “out-

of-the-box,” turn-key execution. Section D.2 provides full detail of all software functions. 

Section D.3 details the jREMISA Java files and depicts the high-level Unified Modeling 

Language (UML) class diagram. Section D.4 provides Source Lines of Code (SLOC) for 

any special programming. Section D.5 provides guidance on how to acquire this software 

package, which is comprised of two pieces: 

1. jREMISA application (2.2 MB JAR file); 

2. MIT-DARPA 1999 week-1 (clean) and week-two (attack) insider filtered20 data 

sets for each day of both weeks (3.45 GB). 

D.1 Quick Start Guide 

1. initialize population and perform negative selection (“Negative Selection” tab): 

a. define the antibody population size for each IP protocol; 

b. define the affinity threshold; 

c. SELECT the jREMISA-filtered (MIT-DARPA) week-one clean data set 

(remember the day you chose); 

                                                 

20 See Appendix B for filtration methodology. 
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d. SELECT the absolute path and filename of the trained-and-immature 

negative-selected population; 

e. Click START. 

2. MOEA: 

a. click the “Data Structure [MIT-DARPA]” tab; 

i. click the IP fields you wish to be evaluated of each data set packet 

(by default, all are selected); 

b. click the “MOEA” tab; 

c. SELECT “Trained population file” as the just-saved trained population; 

d. SELECT the jREMISA-filtered (MIT-DARPA)  week-two attack data set 

and choose the same day as the clean data set you chose, earlier; 

e. click the “truth set” radio button of the attack day you just chose; 

f. SELECT the path where all XML truth set files reside (should already be 

filled in); 

g. SELECT the absolute path and filename of the XML file that contains the 

final Pareto Front population; 

h. define the number of allowable false detections of each Ab before being 

removed from the population; 

i. define the percentage of Abs that is elitist-selected for secondary 

population (that represents the fittest of all Abs); 

j. network mode (OPTIONAL): 

i. choose the “listen” and “broadcast” ports, pre-defined (where 1986 

was the year the AIS concept was conceived); 
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ii. broadcast message: optional; send messages to fellow jREMISA 

administrators; 

iii. broadcast nondoms(%): percentage of fittest Abs you want all 

other jREMISAs to consider incorporating into their population; 

iv. click the “Enable Ad-Hoc Networking” checkbox; 

k. click START. 

D.2 User Manual 

This manual details compilation and execution details of jREMISA. When 

executed, jREMISA begins in the “Negative Selection” menu and has four other major 

function tabs, each described starting in Section D.2.2. Pressing “ERASE WINDOW” 

clears the console output JTextArea. Pressing “EXIT” cleanly exits the application (i.e., if 

you terminate without pressing “EXIT” leaves the app “hanging” in the COMMAND 

PROMPT; hence the “red-X” button is disabled). Online help is in the form of a terse 

usage statement of input type and bounds next to each user input field (JTextField). 

D.2.1 Compiling and execution 

jREMISA is a self-contained JAR. It can be either executed from the command 

line or imported into a Java development environment, such as Eclipse, where the JAR 

file is decomposed into the jREMISA project. To execute the JAR from the command 

line, type “java –XX:+AggressiveHeap –jar jREMISA.jar”. When re-compiling, you 

should always specify the jREMISA class as the main class. 
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D.2.2 Negative Selection menu (Figure 58) 

• Purpose: enable user to generate trained-and-immature Ab detectors. 

• Requirements: 

o clean tcpdump data set file; 

o detector output XML filename. 

• Procedure: 

o define the primary population: either specify a prior trained-and-immature 

population for continued training or define the size of the TCP, UDP and 

ICMP primary populations; 

o define starting affinity threshold (Chapter 5 experiment results indicate 

39% as producing highest classification effectiveness); 

o choose the data set to evaluate (“KDD Cup 99” is non-functional); 

o SELECT clean tcpdump data set absolute path and filename; 

o SELECT output file absolute path and XML filename; 

o click START. 

 “Training Population” sizes update with each passing generation; 

 pressing STOP before completion or allowing completion saves 

the population to the output filename specified; 

 sample negative selection output shown in Section 4.6, Figure 35. 
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Figure 58: jREMISA negative selection menu 
 

D.2.3 MOEA Menu (Figure 59) 

• Purpose: evaluate a trained (i.e., negative selected) population against an attack-

filled ID data set. 

• Requirements: 

o trained population XML file; 

o attack-filled data set; 

o truth set for the above attack data set; 

o post-MOEA output filename; 

o detector lifespan; 

o elitism selection percentage; 
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o networking mode (yes/no). 

• Procedure: 

o SELECT trained population absolute path and XML filename; 

o SELECT attack-filled tcpdump absolute path and filename; 

o click the day of the truth set to apply to the above attack day data set; 

o SELECT the absolute path where all XML truth set files reside (double-

click a filename and the field reflects absolute path, only); 

o SELECT post-MOEA output absolute path and XML filename; 

o enter detector lifespan; 

o enter elitist selection percentage; 

o click “Enable Ad-Hoc UDP Immune System Networking” if performing 

distributed networking: 

 distributed networking is in the form of data decomposition: equal 

partitions of the data set are assigned to each jREMISA; 

 Ethereal breaks the day’s data set file up into equal partitions, 

saved as a new tcpdump file, marking the start and end packet 

number; 

 For example, if you uniformly data-decompose Monday’s data set 

of 1,737,455 packets among four jREMISAs, Ethereal should save 

four files from the Monday data set: 

1. first file should be packet 1 – 434364; 

2. Second file should be packet 434365 – 868728; 

3. Third file should be packet 868729 – 1303092; 
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4. Fourth file should be packet 1303093 – 1737455, 

where each jREMISA’s “Starting packet #” should be the 

starting packet number of each file it’s assigned to. 

o click START. 

 “Primary Population” and “Secondary Population” sizes and 

primary population effectiveness update with each passing 

generation; 

 pressing STOP before completion or allowing completion saves 

the population to the output filename specified; 

 sample post-MOEA output is depicted in Figure 60; it contains: 

• IP fields selected for the detector; 

• high-level effectiveness percentages with x- and y- vectors 

that can be copied-and-pasted into MATLAB variables to 

plot the attack graph, as described in Section 5.3.2; 

• For each secondary population: 

o Pareto Front x- and y-vectors that can be copied-

and-pasted into MATLAB variables to plot the 

Pareto Front, as described in Section 5.3.2; 

o Ab DNA chromosome composition, for future 

jREMISA input. 
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Figure 59: jREMISA MOEA menu 
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Figure 60: Example post-MOEA XML output file 
 

D.2.4 “Data Structure [MIT-DARPA 99]” Menu (Figure 61) 

• Purpose: define the search landscape by picking the components of the IP, TCP, 

UDP and ICMP packets that should be evaluated against only the same fields of 

the data set packets. 

• Requirements: none. 

• Procedure: click the fields to be evaluated; by default, all are selected. 
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Figure 61: JREMISA MIT-DARPA chromosome construction menu 
 

D.2.5 “Data Structure [KDD Cup 99]” Menu (Figure 62) 

• Purpose: define the search landscape by picking the dimensions of the 41-

dimension clear-text string that should be evaluated against only the same 

dimensions of the data set lines. 

• Requirements: none. 

• Procedure: click the fields to be evaluated; by default, all are selected. 

• This feature’s GUI is all that’s completed; Appendix C explains why this data set 

cannot be currently evaluated. 
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Figure 62: jREMISA KDD Cup 99 chromosome construction menu 
 

D.2.6 “Packet Ops” Menu (Figure 63) 

• Purpose: pre-processor feature to filter and ensure entire data set can be decoded 

by jREMISA. If a packet is not of type TCP, UDP or ICMP, jREMISA halts, as 

the Java code used in decoding is only certain of when TCP, UDP and ICMP 

packets begin and end due to their identified sizes in their fields [Stevens94]. 

o This tab was only created to prepare the data sets and is not required 

unless introducing new data sets. 

• Requirements: data set for examination/filtration. 

• Procedure: SELECT the absolute path and name of the tcpdump file and then 

select one of the three functions: 
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o FILTER (truth set filtration): takes a TCP/UDP/ICMP-only data set and 

further filters by protocol, source and destination IP and port; user 

additionally specifies LL attack ID, for reference, and absolute path and 

name of XML file to save all match packet numbers into a truth set file; 

o VERIFY: attempts to read in the entire data set to ensure MOEA 

execution does not prematurely halt; 

o INSPECT: decodes tcpdump file specified into clear-text output in the 

console window. 

 

 

Figure 63: jREMISA tcpdump packet operations menu 
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D.3 jREMISA file hierarchy and UML class diagram 

As introduced in Section 4.1, jREMISA was built in the Eclipse IDE. It is a single 

project with multiple packages. Figure 64 depicts the Eclipse Package Explorer, showing 

the project file hierarchy. Java file variables use Hungarian naming convention to give 

developers the ability to read other people’s code relatively easy, minimizing code 

comments [Cusumano95]. For example, in the GUI (JREMISA.java), variable names that 

are GUI labels are prefixed with “l_” while GUI variable names that hold user input next 

to each label are prefixed with “f_”. 

 

Windows folder containing source .java files (which has its 
complementary “bin” folder of compiled .class files, not shown)

Packages containing Java files that support the SAXBuilder and Element
classes, enabling XML file input/output

Controller package: manipulators of data and program state

Model package: holds data, provides jREMISA structure

Persistence package: data I/O, encoding/decoding, truth set storage
(each XML file is a packet ID sequence of one LL-labeled attack)

UI package: GUI menus and where main is defined as program launch point

“originals” package: acquired code whose original state was saved in the
event of “irrevocable code mess-up and start over”

 

Figure 64: jREMISA file hierarchy 
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jREMISA functionality is made possible through the following files (Figure 64): 

• controller package: 

o Controller.java: accepts user input from GUI, instantiating the objects, 

setting their parameters values and starting/stopping (if object is threaded). 

Enables (sets-up) and disables (tears-down) networking (sockets); 

o QuickSort.java: classic Quicksort algorithm, tailored to look for a 

particular element of the integer array to sort all Ab arrays by in ascending 

order in their respective ArrayList Ab population; 

o UDPbroadcaster.java: encodes user one-liner message or Ab into UDP 

packet and broadcasts to 255.255.255.255; 

o UDPlistener.java: a Runnable thread object that listens (blocks) for 

incoming data from the GUI-specified listen port and decodes packet. If 

user message, this class sends to GUI for output. Else, if Ab, sends back to 

controller for storage until end of generation, when MOEA looks in the 

designated ArrayList for any broadcast Abs. 

• model package: 

o BroadcastAbStorage.java: class whose sole purpose is to maintain the 

ArrayList of captured broadcast Abs. We do this so controller (puts 

broadcast Abs in) and dumpPro (takes broadcast Abs out) threads can 

safely, independently access this container; 

o IObserver.java: interface that routes all GUI-output messages from non-

“UI class” objects to the GUI, for output. This implements the Observer 
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software design pattern by separating concerns between the UI and the rest 

of the program. 

• persistence package: 

o DumpPro.java: this is the algorithm workhorse. Originally acquired from 

SSFNet (see Section 4.3.1), this class’ original purpose was to only read in 

binary tcpdump files. To tighten code locality for faster operation, we 

developed all MOEA code within this class. As a result, this Runnable 

object is always instantiated when STARTing any functions from any of 

the GUI’s tabbed menus. As this class was intended only for binary 

tcpdump files, it should not be used for data sets not using this format (i.e., 

KDD Cup 99); 

o Persistence.java: performs all persistent input/output. Loads and saves 

XML-format populations for both negative selection and MOEA 

operations and saves packet filter matches as an XML file containing 

packet identification numbers; 

o 16 “ID<#>.xml” files: all 16 attacks’ extracted packet numbers (via the 

Filter function in the GUI) from the LL week two data sets are each saved 

into a XML file with the LL-labeled attack number as the filename. 

• ui package: 

o JREMISA.java: the GUI and program execution point (main class). 
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• “originals” package (no Java files in this package participate in jREMISA): 

o QuickSortORIGINAL: Internet-acquired code treated as the original copy; 

o NegSelectionKDDCUP99: this class was intended to decode and parse the 

KDD Cup 99 data; it’s started but not finished; 

o SSF.OS package: Internet-acquired code treated as the original copy. 

Figure 65 depicts jREMISAs UML class diagram in the MVC architecture. For 

the sake of brevity and keeping the diagram to one page, attributes and methods are not 

included, other than the main class to indicate program launch point. 
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Figure 65: jREMISA UML class diagram 
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D.4 Special Source Code 

We inserted Windows API system calls into misa.c and realgo.cpp to acquire a 

nanosecond-precision timer for the purpose of comparing efficiency to its Java 

counterpart (see Section 4.2): 

// The below three lines aid in acquiring system time on the 
nanosecond-level by accessing the Win32 API 
// WARNING: This method of time-capture is effective only on single 
core CPU architectures 
#pragma comment(lib, "winmm.lib") // Additionally link this lib (same 
as adding it in Config settings) 
#include <windows.h> 
#include <mmsystem.h> 
... 
// Get the high resolution counter's accuracy 
QueryPerformanceFrequency(&ticksPerSecond); 
QueryPerformanceCounter(&startClock);  // MARK START TIME 
... 
QueryPerformanceCounter(&endClock);  // MARK END TIME 
 
printf( "elapsed: %3.6f ms\n", ((double)(endClock.QuadPart - 
startClock.QuadPart) / (double)ticksPerSecond.QuadPart) * 1000); 

 

D.5 Source Code Availability 

The source code for jREMISA and accompanying filtered MIT-DARPA 1999 week-one 

and week-two data sets are not included as part of this document. Those interested in 

obtaining a copy of either should direct their request to: 

Dr. Gary B. Lamont 

AFIT/ENG 

2950 Hobson Way, Building 640 

WPAFB, OH 45433-7765 

Gary.Lamont@afit.edu 
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Appendix E: Recommended Software Engineering Principles 

 

This appendix is motivated by this researcher’s personal experience of constantly 

acquiring software by others who code as if they never use it again. Such symptoms of 

software engineering apathy include: 

1. lack of regular commenting of code; 

2. no “quick start” or compile guide; 

3. using special software libraries (i.e., Dynamically-Linked Libraries or DLLs) 

without indicating; 

4. hard-wiring parameters and variables, preventing dynamic reconfiguration 

without having to re-compile each time; 

5. not including raw output files with software when surrendered to academic 

institution. 

Applications that are devoid of compile and execution help, usage statements and source 

code commenting increase the software learning curve, consequently lessening the desire 

to inherit such an application. The Institute of Electrical and Electronics Engineers 

(IEEE) Standard 610.12-1990 defines software engineering as, “(1) The application of a 

systematic, disciplined, quantifiable approach to the development, operation, and 

maintenance of software; that is, the application of engineering to software. (2) The study 

of approaches as in (1).” This definition implies constrained coding practices in 

developing concisely written and understood software applications. Such practices can be 

applied equally by software engineers and non-software engineers, alike, and reduces the 
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learning curve, resulting in more time for application development. Hence, we 

recommend the following basic software engineering practices: 

1. ensure finished application compiles on school’s common lab computer—not just 

the developer’s personal computer; 

2. comment the code: 

a. a terse paragraph at the top of the program file explaining its intent; 

b. a comment summary of each method (function); 

c. if employing a GUI, one-liner usage comment pop-up when the mouse or 

cursor hovers over an input field or usage help next to the input field; 

3. include a help statement explaining both execution and compile instructions and a  

usage statement of all arguments and parameters; 

4. include raw data files, in addition to source code, in the final software package; 

5. avoid defining (“hardwiring”) values of variables in the code; allow for command 

line arguments or GUI fields to facilitate changing values at runtime, without 

recompiling. 

Following these practices preserves software for future use by author and 

successor, in both academia and real-world applications. The longer the time passed 

between reusing code, the greater appreciation one has in more quickly understanding the 

reason and manner in which the code was written. In summary, this author’s golden rule 

is “code it as if your work is carried on.” 
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Appendix F: The Benefits of Open-Source Software 

 

This appendix is motivated by this researcher’s inability to acquire ID evaluation 

results, signatures and data sets from proprietary sources such as anti-virus software 

development companies. While the need to keep company secrets has merit, there exist 

ways to still work with the leading ID software developers of the day. By not facilitating 

an open dialogue, our few aging data sets continue to be the ID application developer’s 

only benchmark against today’s new breed of attacks. If commercial entities still refuse to 

communicate, then perhaps an open-source development approach needs to be taken. 

To date, there have been many public debates, case studies and even an AFIT-

sanctioned course this researcher completed that contrasted the value and risk of open-

source, public domain source code versus proprietary software [Raymond00, MFH02, 

HS02, HSE03]. One of the shortfalls of this software’s development is the inability to 

sample IDS manufacturers’ signature generating and comparison methodologies. 

Therefore, we recommend jREMISA’s lifecycle continue in an open-source manner for 

the following reasons: 

1. the prospect of free and conveniently available software entices more curious 

people to experiment with this work; 

2. multiple parties can develop it, while openly communicating ideas to each other 

and improving the existing code; 

3. public domain source code minimizes the possibility of malicious code or 

exploitable vulnerabilities; 
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4. the upgrade cycle is tightened due to less required formality (e.g., no marketing  

and procedure for costly upgrading), allowing for quicker source code releases. 
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